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Introduction







CHAPTER
ONE

DEFINITION OF TERMS USED IN THIS GUIDE

Several terms used throughout the Physics Reference Manual have specific meaning within GEANT4, but are not
well-defined in general usage. The definitions of these terms are given here.

process - a C++ class which describes how and when a specific kind of physical interaction takes place along a
particle track. A given particle type typically has several processes assigned to it. Occasionally “process” refers
to the interaction which the process class describes.

model - a C++ class whose methods implement the details of an interaction, such as its kinematics. One or more
models may be assigned to each process. In sections discussing the theory of an interaction, “model” may refer
to the formulae or parameterization on which the model class is based.

Geant3 - a previous physics simulation tool written in Fortran, and the direct predecessor of GEANT4. Although
some references are still made to Geant3, no knowledge of it is required to understand this manual.

Verification - in terms of physics modelling we define verification of testing a model at the thin target level to
determine if it performs as expected normally in terms of double differential cross-sections. This is as much a
computational unit test as a theoretical investigation.

Validation - a comparison between a physics model and real experimental data. This may be at the microscopic
(thin target) level whereby the experiment have provided derived cross sections from their data, or at a larger
macroscopic (thick target) level whereby experimental data are directly compared with experiment.
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CHAPTER
TWO

MONTE CARLO METHODS

The GEANT4 toolkit [SA03][JA09][eal16] uses a combination of the composition and rejection Monte Carlo methods.
Only the basic formalism of these methods is outlined here. For a complete account of the Monte Carlo methods,
the interested user is referred to the publications of Butcher and Messel, Messel and Crawford, or Ford and Nelson
[BM60][MC70][NHRS85].

Suppose we wish to sample z in the interval [z, x2] from the distribution f(z) and the normalised probability density
function can be written as :

f@) =Y Nifi(z)gi(z)
=1

where N; > 0, f;(x) are normalised density functions on [z, x2],and 0 < g;(x) < 1.
According to this method, x can sampled in the following way:
1. select a random integer i € {1,2,---n} with probability proportional to V;
2. select a value x( from the distribution f;(z)
3. calculate g;(x) and accept 2 = x¢ with probability g;(zo);
4. if z( is rejected restart from step 1.
It can be shown that this scheme is correct and the mean number of tries to accept a value is ) _, IV;.
In practice, a good method of sampling from the distribution f(z) has the following properties:
* all the subdistributions f;(z) can be sampled easily;
* the rejection functions g;(x) can be evaluated easily/quickly;
* the mean number of tries is not too large.

Thus the different possible decompositions of the distribution f(x) are not equivalent from the practical point of view
(e.g. they can be very different in computational speed) and it can be useful to optimise the decomposition.

A remark of practical importance : if our distribution is not normalised
o
/ flx)de=C>0
1

the method can be used in the same manner; the mean number of tries in this case is D  Ni /C.
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CHAPTER
THREE

PARTICLE TRANSPORT

3.1 Particle transport

Particle transport in GEANT4 [SAO03] is the result of the combined actions of the GEANT4 kernel’s Stepping Manager
class and the actions of processes which it invokes—physics processes and the Transportation ‘process’ which identifies
the next volume boundary and also the geometrical volume that lies behind it, when the track has reached it.

The expected length at which an interaction is expected to occur is determined by polling all processes applicable at
each step.

Then it is determined whether the particle will remain within the current volume long enough, otherwise it will cross
into a different volume before this potential interaction occurs.

The most important processes for determining the trajectory of a charged particle, including boundary crossing and
the effects of external fields are the multiple scattering process and the Transportation process, which is discussed in
the second following section.

3.2 True Step Length

GEANT4 simulation of particle transport is performed step by step [SA03]. A true step length for a next physics
interaction is randomly sampled using the mean free path of the interaction or by various step limitations established
by different GEANT4 components. The smallest step limit defines the new true step length.

3.2.1 The Interaction Length or Mean Free Path

Computation of mean free path of a particle in a media is performed in GEANT4 using cross section of a particular
physics process and density of atoms. In a simple material the number of atoms per volume is:

_Np
T A

n

where:

N = Avogadro’s number
p = density of the medium
A = mass of a mole

In a compound material the number of atoms per volume of the 7*" element is:

— N pw;
(. A,L
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where:

w; = proportion by mass of the i element

A; = mass of a mole of the i*" element

The mean free path of a process, A, also called the interaction length, can be given in terms of the total cross section:

AE) = (Z[ni ~0(Zi, E)])

where o(Z, E) is the total cross section per atom of the process and ) _, runs over all elements composing the material.

> [nio(Z;, E)] is also called the macroscopic cross section. The mean free path is the inverse of the macroscopic
i

cross section.

Cross sections per atom and mean free path values may be tabulated during initialisation.

3.2.2 Determination of the Interaction Point

The mean free path, A, of a particle for a given process depends on the medium and cannot be used directly to sample
the probability of an interaction in a heterogeneous detector. The number of mean free paths which a particle travels
is:

2 dx
ny = —
xrq A(I) '
which is independent of the material traversed. If n, is a random variable denoting the number of mean free paths
from a given point to the point of interaction, it can be shown that n,. has the distribution function:

Pn,<ny)=1—e"™

The total number of mean free paths the particle travels before reaching the interaction point, ny, is sampled at the
beginning of the trajectory as:

ny = —log (1)

where 7 is a random number uniformly distributed in the range (0, 1). n) is updated after each step Az according the
formula:

, Az
SN e

until the step originating from s(z) = n) - A(z) is the shortest and this triggers the specific process.

3.2.3 Step Limitations

The short description given above is the differential approach to particle transport, which is used in many other
simulation codes. In this approach besides the other (discrete) processes the continuous energy loss and multiple
scattering imposes a limit on the step-size too [JAO9][eall6], because the cross section of different processes depend
of the energy of the particle. Then it is assumed that the step is small enough so that the particle cross sections
remain approximately constant during the step. In principle, one must use very small steps in order to insure an
accurate simulation, but computing time increases as the step-size decreases and the default model of energy loss
fluctuations will not be accurate for extremly small steps. A good compromise depends on required accuracy of a
concrete simulation. The problem is reduced using integral approach, which is described below in Correcting the
Cross Section for Energy Variation. However, this only provides effectively correct cross sections but step limitation
is needed also for more precise tracking. Thus, in GEANT4 any process may establish additional step limitation, the
most important limits come from ionisation and multiple scattering (see details in sub-chapters Step-size Limit and
Step Limitation Algorithm correspondingly).

8 Chapter 3. Particle Transport
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3.2.4 Updating the Particle Time

The laboratory time of a particle should be updated after each step:

1 1
Atjap = 0.5Ax < + > s
(% (%)
where Az is a true step length traveled by the particle, v, and v, are particle velocities at the beginning and at the end
of the step correspondingly.

3.3 Transportation

The transportation process is responsible for determining the geometrical limits of a step. It calculates the length of
step with which a track will cross into another volume. When the track actually arrives at a boundary, the transportation
process locates the next volume that it enters.

If the particle is charged and there is an electromagnetic (or potentially other) field, it is responsible for propagating
the particle in this field. It does this according to an equation of motion. This equation can be provided by GEANT4,
for the case a magnetic or EM field, or can be provided by the user for other fields.

F:g(E—kva)

v

dp_l
ds v

Extensions are provided for the propagation of the polarisation, and the effect of a gravitational field, of potential
interest for cases of slow neutral particles.

3.3.1 Some additional details on motion in fields

In order to intersect the model GEANT4 geometry of a detector or setup, the curved trajectory followed by a charged
particle is split into ‘chords segments’. A chord is a straight line segment between two trajectory points. Chords are
created utilizing a criterion for the maximum estimated value of the sagitta—the distance between the further curve
point and the chord.

The equations of motions are solved utilising Runge Kutta methods. For the simplest case of a pure magnetic field,
only the position and momentum are integrated. If an electric field is present, the time of flight is also integrated since
the velocity changes along the step.

A Runge Kutta integration method for a vector y starting at y .. and given its derivative dy’(s) as a function of y
and s. For a given interval % it provides an estimate of the endpoint y,, ;. and of the integration error y¢,ror, due to
the truncation errors of the RK method and the variability of the derivative.

The position and momentum as used as parts of the vector y, and optionally the time of flight in the lab frame and the
polarisation.

A proposed step is accepted if the magnitude of the location components of the error is below a tolerated fraction e of
the step length s

‘AXl = |Xe'r7‘or‘ <€exs
and the relative momentum error is also below e:
‘Ap| = |perror| <€

The transportation also updates the time of flight of a particle. In case of a neutral particle or of a charged particle in a
pure magnetic field it utilises the average inverse velocity (average of the initial and final value of the inverse velocity.)

3.3. Transportation 9
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In case of a charged particle in an electric field or other field which does not preserve the energy, an explicit integration
of time along the track is used. This is done by integrating the inverse velocity along the track:

S1 1
tl = to +/ *ds
S0 v

Runge Kutta methods of different order can be utilised for fields depending on the numerical method utilised for
approximating the field. Specialised methods for near-constant magnetic fields are also available.

10 Chapter 3. Particle Transport
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CHAPTER
FOUR

DECAY

The decay of particles in flight and at rest is simulated by the G4Decay class.

4.1 Mean Free Path for Decay in Flight

The mean free path A is calculated for each step using
A =~Ber

where 7 is the lifetime of the particle and

1
UV =4

[ and ~y are calculated using the momentum at the beginning of the step. The decay time in the rest frame of the
particle (proper time) is then sampled and converted to a decay length using 3.

4.2 Branching Ratios and Decay Channels

G4Decay selects a decay mode for the particle according to branching ratios defined in the G4DecayTable class, which
is a member of the G4ParticleDefinition class. Each mode is implemented as a class derived from G4VDecayChannel
and is responsible for generating the secondaries and the kinematics of the decay. In a given decay channel the daughter
particle momenta are calculated in the rest frame of the parent and then boosted into the laboratory frame. Polarization
is not currently taken into account for either the parent or its daughters.

A large number of specific decay channels may be required to simulate an experiment, ranging from two-body to
many-body decays and V-A to semi-leptonic decays. Most of these are covered by the five decay channel classes
provided by GEANT4:

G4PhaseSpaceDecayChannel | phase space decay
G4DalitzDecayChannel dalitz decay
G4MuonDecayChannel muon decay
G4TauLeptonicDecayChannel | tau leptonic decay
G4KL3DecayChannel semi-leptonic decays of kaon

15
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4.2.1 G4PhaseSpaceDecayChannel

The majority of decays in GEANT4 are implemented using the G4PhaseSpaceDecayChannel class. It simulates
phase space decays with isotropic angular distributions in the center-of-mass system. Three private methods of
G4PhaseSpaceDecayChannel are provided to handle two-, three- and N-body decays: TwoBodyDecaylt(), Three-
BodyDecaylt(), ManyBodyDecayIt().

Some examples of decays handled by this class are:
T =7,
A —pr™

and

K — nOxtn.

4.2.2 G4DalitzDecayChannel

The Dalitz decay
70— v+ et +e”
and other Dalitz-like decays, such as
KL —y+et +e
and
KL= y+upt+u
are simulated by the G4DalitzDecayChannel class. In general, it handles any decay of the form
PO =y It 41,

where P is a spin-0 meson of mass M and I* are leptons of mass m. The angular distribution of the + is isotropic in
the center-of-mass system of the parent particle and the leptons are generated isotropically and back-to-back in their
center-of-mass frame. The magnitude of the leptons’ momentum is sampled from the distribution function

t\? 2m?2 4m?
f“)(lw) (1+t) ==

where t is the square of the sum of the leptons’ energy in their center-of-mass frame.

4.2.3 Muon Decay

G4MuonDecayChannel simulates muon decay according to V-A theory. The electron energy is sampled from the
following distribution:
G F2m 5
dl = ——£ 223 -2
128 2 3729

where:
I' = decay rate
€=FE./Enax
E, = electron energy

B4z = maximum electron energy = m, /2
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The magnitudes of the two neutrino momenta are also sampled from the V-A distribution and constrained by energy
conservation. The direction of the electron neutrino is sampled using

cos(0)=1-2/E. —2/E,c +2/E./E,

and the muon anti-neutrino momentum is chosen to conserve momentum. Currently, neither the polarization of the
muon nor the electron is considered in this class.

4.2.4 Leptonic Tau Decay

G4TauLeptonicDecayChannel simulates leptonic tau decays according to V-A theory. This class is valid for both

Ti%eiJrz/TJrz/e

and
= ,ui +vrtuv,
modes.

The energy spectrum is calculated without neglecting lepton mass as follows:

Gr’m.® 2 2 2
dl = 2473195& (3Eym;* —4E°m; — 2m.m;*)
/I

where:
I' = decay rate
E; = daughter lepton energy (total energy)
p; = daughter lepton momentum

m; = daughter lepton mass

As in the case of muon decay, the energies of the two neutrinos are not sampled from their V-A spectra, but are
calculated so that energy and momentum are conserved. Polarization of the 7 and final state leptons is not taken into
account in this class.

4.2.5 Kaon Decay

The class G4KL3DecayChannel simulates the following four semi-leptonic decay modes of the kaon:
Kieg:KjE S0+ et v
Kng:Ki a0+t 4
K3 : K% 51t +efF v
K3 K? > nt+puFT4v
Assuming that only the vector current contributes to K — Imv decays, the matrix element can be described by using

two dimensionless form factors, f; and f_, which depend only on the momentum transfer t = (Px — P,)?. The
Dalitz plot density used in this class is as follows [LMCG72]:

p (Ex, By) o f2(t) [A+ BE (1) + CE (1)’
where:
A=mg(2E,E, — mgE.,)+m,” (AE. — E,)
B=m? (B, ~ 3B
C=im,E.
E = E, ™" — E,
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Here £ (1) is the ratio of the two form factors
§(t) = -0/ f+ @)
f+ (t) is assumed to depend linearly on t, i.e.,
o (&) = [ (O)[1+ Ay (t/mr?)]

and f_ (t) is assumed to be constant due to time reversal invariance.

Two parameters, A, and £ (0) are then used for describing the Dalitz plot density in this class. The values of these
parameters are taken to be the world average values given by the Particle Data Group [eal00].
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CHAPTER
FIVE

ELECTROMAGNETIC PHYSICS IN GEANT4

5.1 Introduction

The GEANT4 set of electromagnetic (EM) physics processes and models [ealO3][eall 1][eal09][eall16] are used in
practically all types of simulation applications including high energy and nuclear physics experiments, beam transport,
medical physics, cosmic ray interactions and radiation effects in space. In addition to models for low and high energy
EM physics for simulation of radiation effects in media, a sub-library of very low energy models was developed
within the framework of the GEANT4-DNA project, with the goal of simulating radiation effects involving physics and
chemistry at the sub-cellular level [eal14].

5.2 EM physics sub-packages

In the early stages of GEANT4, low and high energy electromagnetic processes were developed independently, with
the result that these processes could not be used in the same run. To resolve this problem, the interfaces were unified
so that the standard, muon, high energy, low energy and DNA EM physics sub-packages now follow the same design
[ealll].

All GEANT4 physical processes, including transportation, decay, EM, hadronic, optical and others, were implemented
via the unique general interface G4VProcess. Three EM process interfaces inherit from it via the intermediate
classes [eal09]:

* G4VEnergyLossProcess, which is active along the step and post step,
* G4VMultipleScattering, which is active along the step,
* G4AVEmProcess, which is active post step and at rest.

These three base classes are responsible for interfacing to the GEANT4 kernel, initializing the electromagnetic physics,
managing the energy loss, range and cross sections tables, managing the electromagnetic models, and the built-in
biasing options. These based classes are also responsible for managing of EM classes in the multi threaded mode of
Geant4 [eal 16]. Most part of EM internal data objects are shared between threads and are destructed end of run these
data objects and all models.

A concrete physics process class inherits from one of these base classes, and has one or more physics models. EM
physics models were implemented via the G4VEmMode1 interface. A model is applied for a defined energy range and
gclass{G4Region}, allowing, for example, one model from the low energy and one from the high energy sub-package
to be assigned to a process for a given particle type. Each of these processes have following phases:

* initial initialisation at time of construction, when the default set of EM parameters is defined;
* possible modification of EM parameters by a user;

* initialisation before the run, which includes preparation of tables with cross sections, energy losses, ranges, and
other values;
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* initialisation of the main tables is carried out only in the master thread at the beginning of a run and these tables
are shared between threads at run time;

* run time access to the cross section or computation it by a selected model on-fly;
 sampling of final state via the model;
* destruction of EM objects at the end of simulation.

The EM model classes are responsible for concrete computations of cross sections and for sampling of final state. If
a model class has a private objects, which does not inherit of the G4VEmMode1l interface, then deletion end of run of
these objects is a responsibility of this model class. The EM process based classes select a model for the given energy
and region and communicate with the GEANT4 kernel in a generic way in all phases.

Migration to this common design resulted in an improvement of overall CPU performance, and made it possible to
provide several helper classes which are useful for a variety of user applications:

* G4EmParameters: class which keep the set of EM parameters, which may be changed via C++ access
methods or Ul commands, the access is opened for all parameters in the PreInit state of GEANT4 and for
part of parameters in the Id1e state;

* G4EmCalculator: accesses or computes cross section, energy loss, and range;

* G4EmConfigurator: adds extra physics models per particle type, energy, and geometry region;
* G4EmSaturation: adds Birks saturation of visible energy in sensitive detectors;

* G4ElectronIonPair: samples ionisation clusters in tracking devices.

Further improvements were made through the factorization of secondary energy and angle sampling.
G4VEmAngularDistribution common interface allows the reuse of angular generator code by models in all
EM sub-packages. The implementation of a unified interface for atomic de-excitation, G4VAtomDeexcitation
provides the possibility of sampling atomic de-excitation by models from all EM sub-packages.

5.3 Low Energy Livermore Model

Additional electromagnetic physics processes for photons, electrons, hadrons and ions have been implemented in
GEANT4 in order to extend the validity range of particle interactions to lower energies than those available in the
standard GEANT4 EM [eal99]. Since the atomic shell structure is more important in most cases at low energies than
it is at higher energies, the low energy processes make direct use of shell cross section data. The standard processes,
which are optimized for high energy physics applications, often rely on parameterizations of these data.

Low energy processes include the photo-electric effect, Compton scattering, Rayleigh scattering, gamma conversion,
bremsstrahlung and ionisation. Also atomic de-excitation module is implemented within this sub-package, which
includes fluorescence and Auger electron emission of excited atoms. The implementation of low energy processes is
valid for elements with atomic number between 1 and 99, and for energies down to 10 eV, upper limit depends on the
process.

The data used for the determination of cross-sections and for sampling of the final state are extracted from a set of
publicly distributed evaluated data libraries:

* EPDL97 (Evaluated Photons Data Library) [CHK89];
EPICS2014 (Evaluated Photons Data Library) [NEA];
EEDL (Evaluated Electrons Data Library) [STPerkins&9];

EADL (Evaluated Atomic Data Library) [PCeal];

* binding energy values based on data of Scofield [Sco75].
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Evaluated data sets are produced through the process of critical comparison, selection, renormalization and averag-
ing of the available experimental data, normally complemented by model calculations. These libraries provide the
following data:

* total cross-sections for photoelectric effect, Compton scattering, Rayleigh scattering, pair production and
bremsstrahlung;

* subshell integrated cross sections for photo-electric effect and ionisation;

* energy spectra of the secondaries for electron processes;

* scattering functions for the Compton effect;

* binding energies for electrons for all subshells;

* transition probabilities between subshells for fluorescence and the Auger effect.

These data are used directly or are transformed into Geant4 format specific for each model. The author of EPDL97,
who is also responsible for the EPICS2014, EEDL, and EADL data libraries, Dr. Red Cullen, has kindly permitted
the libraries and their related documentation to be distributed with the GEANT4 toolkit. The data are reformatted for
GEANT4 input and are inside the G4ALEDATA data set, which may be downloaded from the GEANT4 download page.

The EADL, EPICS2014, EEDL and EPDL97 data-sets are also available from several public distribution centres in a
format different from the one used by GEANT4 [NEAD].

5.4 Penelope Models

Physics processes for photons, electrons and positrons have been implemented in GEANT4 according to the PENE-
LOPE code (PENetration and Energy LOss of Positrons and Electrons), version 2008. Models for the following
processes have been included: Compton scattering, photoelectric effect, Rayleigh scattering, gamma conversion,
bremsstrahlung, ionisation and positron annihilation and are described in more detail in Ref.[eal01]. The Penelope
models have been specifically developed for Monte Carlo simulation and great care was given to the low energy de-
scription (i.e. atomic effects, etc.). Hence, these implementations provide reliable results for energies from 100 eV up
to 6 GeV [ealO1][SFernandezVAS03], in GEANT4 the upper limit 1 GeV is used. These models may be used as an
alternative to standard and Livermore models.

5.5 Generic Calculation of Total Cross Sections

In GEANT4 EM interpolation of physics tables (energy loss, ranges, cross sections) is performed by the
G4PhysicsVector class using linear or logarithmic scale with linear or spline iterpolation. For a number of
models the energy dependence of the total cross section is not so regular. For example, the Livermore evaluated data
libraries with a scale of the concrete data. Thus, for some models the total cross is obtained by interpolation according
to the formula [Ste03]:

_ log(01) log(E3/E) + log(0z) log(E/ E1)
IOg(Eg/El)

where E is actual energy, 1 and Es are respectively the closest lower and higher energy points for which data (o
and o09) are available. For other processes interpolation method is chosen depending on cross section shape.

log(c(E))

(5.1)
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CHAPTER
SIX

GAMMA INCIDENT

6.1 Introduction to Gamma Processes

All processes of gamma interaction with media in GEANT4 happen at the end of the step, so these interactions are
discrete and corresponding processes are following the G4VDiscreteProcess interface.

6.1.1 General Interfaces

There are a number of similar functions for discrete electromagnetic processes and for electromagnetic (EM) packages
an additional base classes were designed to provide common computations [eal09]. Common calculations for discrete
EM processes are performed in the class G4VEmProcess. Derived classes (Table 6.1) are concrete processes providing
initialisation. The physics models are implemented using the G4VEmModel interface. Each process may have one
or many models defined to be active over a given energy range and set of G4Regions. Models are implementing
computations of cross section and sampling of final state. The list of EM processes and models for gamma incident is
shown in Table 6.1.
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Table 6.1: List of process and model classes for gamma.

EM process

EM model

Ref.

G4PhotoElectricEffect

G4PEEffectFluoModel

Section 6.3

G4LivermorePhotoElectricModel

Section 6.3.5

G4LivermorePolarizedPhotoElectricModel

G4PenelopePhotoElectricModel

Section 6.3.4

G4PolarizedPhotoElectricEffect

G4PolarizedPEEffectModel

Section 13.7

G4ComptonScattering G4KleinNishinaCompton Section 6.4
G4KleinNishinaModel Section 6.4
G4LivermoreComptonModel Section 6.4.5
G4LivermoreComptonModelRC
G4LivermorePolarizedComptonModel Section 13.4
G4LowEPComptonModel Section 6.4.6
G4PenelopeComptonModel Section 6.4.4

G4PolarizedCompton G4PolarizedComptonModel Section 13.4

G4GammaConversion G4BetheHeitlerModel Section 6.5
G4BetheHeitlerSDModel Section 6.5.4

G4BetheHeitlerSDModel

Section 13.10

G4PairProductionRelModel

G4LivermoreGammaConversionModel

Section 6.5.6

G4BoldyshevTripletModel

Section 6.6

G4LivermoreNuclearGammaConversionModel

G4LivermorePolarizedGammaConversionModel

G4PenelopeGammaConversion

Section 6.5.5

G4PolarizedGammaConversion

G4PolarizedGammaConversionModel

Section 13.6

G4RayleighScattering

G4LivermoreRayleighModel

Section 6.2.2

G4LivermorePolarizedRayleighModel

G4PenelopeRayleighModel

Section 6.2.1

G4JAEAEIlasticScattering

G4JAEAElasticScatteringModel

Section 6.2.3

G4GammaConversionToMuons

Section 6.7

6.2 Elastic Scattering

Elastic scattering of gammas can involve Rayleigh, nuclear Thomson and Delbriick scattering. The Rayleigh process in
GEANT4 can be simulated with either the Penelope (Penelope Models) or Livermore models (Low Energy Livermore
Model). A more detailed model involving atomic and molecular interactions is included as a JAEA model (JAEA
Elastic Scattering Model). These specific implementations are described in more detail below.

6.2.1 Penelope Model

Total cross section

The total cross section of the Rayleigh scattering process is determined from an analytical parameterization. The
atomic cross section for coherent scattering is given approximately by [Bor69]

1 2
o(E) = 7rr2/ LS 0 2)2 deos, ©.1)

e 1 2
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where F'(q, Z) is the atomic form factor, Z is the atomic number and q is the magnitude of the momentum transfer,
i.e.

5 E . ( 0 )

= 2—sin(=).

e c 2

In the numerical calculation the following analytical approximations are used for the form factor:

F((LZ):f(x?Z): , . .
l4a1z“+asx"+asx
Z —i(_lia4:2ia5l_4)32 or
max[f(z,Z), Fg(x,Z)] ifZ > 10and f(z,2Z) < 2

where
sin(2barctan Q)
Fx(,2) = ——>,
<) = 00+ Qo
with
_ q _ 4 - a— 5
x = 20.6074 , Q= , b=+V1—-a? a=alZ-—),
MeC 2meca 16

where « is the fine-structure constant. The function F (z, Z) is the contribution to the atomic form factor due to the
two K-shell electrons (see [eal94]). The parameters of expression f(x, Z) have been determined in Ref. [eal94] for
Z =1 to 92 by numerically fitting the atomic form factors tabulated in Ref. [eal75]. The integration of Eq.(6.1) is
performed numerically using the 20-point Gaussian method. For this reason the initialization of the Penelope Rayleigh
process is somewhat slower than the Low Energy Livermore process.

Form Factor for compounds and mixtures

In the case of compounds and mixtures, the form factor is calculated, by default, through a weighted sum of the
atomic form factors of the elements composing the material and using their mass fractions as weights. However,
this approach, which is called independent atom model (IAM) and is natively adoped by all the particle tracking
codes, does not consider the inteference effect of the photons scattered by the bound electrons in molecules. As a
consequence, the scattering pattern will not feature the peaks at small values of momentum transfer that characterize
the considered material. To take into account the molecular interference effect (MI), form factors extracted from the
measured scattering (diffraction) patterns can be used. A database of form factors including MI effect for a variety of
materials, mainly biological tissue and plastics, is available. In order to use the files of the database, the user has to
label the defined materials according to the following table:

material label

fat Fat_MI

water Water_MI
collagen BoneMatrix_MI
hydroxyapatite Mineral_MI
PMMA PMMA_MI
adipose adipose_MI
glandular glandular_MI
breast (50%fat + 50%water) | breast5050_MI
liver liver_MI
kidney kidney_MI
muscle muscle_MI
heart heart_MI
blood blood_MI
bone bone_MI

continues on next page
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Table 6.2 — continued from previous page

carcinoma carcinoma_MI
white matter of brain whiteMatter MI
gray matter of brain grayMatter_MI

fat (ext. to low q) FatLowX_MI
collagen (ext. to low q) BoneMatrixLowX_MI
dry bone (ext. to low q) dryBoneLowX_MI
lexan Lexan_MI

kapton Kapton_MI

nylon Nylon_MI
polyethylene Polyethylene_MI
polystyrene Polystyrene_MI
formaline Formaline_MI
acetone Acetone_MI
Hydrogen peroxide Hperoxide_MI
CIRS30-70 CIRS30-70_MI
CIRS50-50 CIRS50-50_MI
CIRS70-30 CIRS70-30_MI
RMI454 RMI454_MI

Due to the tissue variability, the measured diffraction patterns of two samples of the same tissue type may differ
significantly. To overcome this problem, a generic tissue can be decomposed in simpler basis materials with well-
defined elemental composition. In particular, each tissue is considered as a composition of four components, namely
fat, water, collagen or bone matrix, and hydroxyapatite (see [PaternoCC+18], [PaternoCGT20]). The form factor of a
generic tissue can be then expressed through the mixture rule using tissues (molecules or supramolecules) instead of
atoms as:

F2(q) <= a;F2(q)
v —E:j W (6.2)

i=1

where a; is the mass fraction of i-th basis component.

In order to enable this functionality, the user has to create the mixture of basis materials (whose composition and
density are defined in [PaternoCGT20] and label the material as MedMat_al_a2_a3_a4, where ai are three digit
numbers representing the mass fraction of the basis components. Then, the form factor of the material is automatically
calculated according to Eq.(6.2).

In order to gain generality, the user has the faculty of providing the form factor of the materials he wants to consider.
This is obtained by defining a material as G4ExtendedMaterial and registering G4MIData extension. The SetFilenam-
eFF() method of this class allows to specify the path of the file with the form factor of the material. This functionality
is particularly suited for modeling materials with partial crystalline beahviour, such as powder and polycrystals, which
are characterize by a large number of sharp diffraction peaks.

Sampling of the final state

The angular deflection cos 6 of the scattered photon is sampled from the probability distribution function

1+ cos? 6

P(cosf) = 5

[F(q, Z)).

For details on the sampling algorithm (which is quite heavy from the computational point of view) see Ref. [ealO1].
The azimuthal scattering angle ¢ of the photon is sampled uniformly in the interval (0, 27).
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6.2.2 Livermore Model

Total Cross Section

The total cross section for the Rayleigh scattering process is determined from the data as described in Generic Calcu-
lation of Total Cross Sections.

Sampling of the Final State

The coherent scattered photon angle 6 is sampled according to the distribution obtained from the product of the
Rayleigh formula (1 + cos? 6) sin § and the square of Hubbel’s form factor F'F2(q) [eal79] [Cul95]

®(FE,0) = [1 + cos® 0] sinf x FF?(q),

where ¢ = 2E sin(6/2) is the momentum transfer.

Form factors introduce a dependency on the initial energy E of the photon that is not taken into account in the
Rayleigh formula. At low energies, form factors are isotropic and do not affect angular distribution, while at high
energies they are forward peaked. For effective sampling of final state a method proposed by D.E. Cullen [Cul95] has
been implemented: form factor data were fitted and fitted parameters included in the G4LivermoreRayleighModel.

The sampling procedure is following:
1. atom is selected randomly according to cross section;
2. cos @ is sampled as proposed in [Cul95];

3. azimuthal angle is sampled uniformly.

6.2.3 JAEA Elastic Scattering Model

The ~y-ray elastic scattering process in GEANT4 is a process that takes into consideration the different mechanisms in
which a high-energy photon may be elastically scattered by an atom. These mechanisms include Rayleigh scattering,
nuclear Thomson scattering, and Delbriick scattering. A new model developed by JAEA includes all these scattering
mechanisms collectively as elastic scattering. A more detailed description can be found in Ref. [OH18].

Total cross section

The total cross section is given by [OH17]

T do
=4 —
o 77/0 decosH

where

do 2 R T D2

dQ_|A| =|A"+ A" + A"

Here A” is the Rayleigh scattering amplitude, A” is the nuclear Thomson scattering amplitude, A is the Delbriick
scattering amplitude, and A is the resultant scattering amplitude. The resultant amplitude is a function of the incident
photon energy F, scattering angle ¢, and the atomic number of the scattering atom Z. The total and differential cross
sections are pre-calculated and prepared in data files for all elements with 1 < Z < 100 and 10 keV < E < 3 MeV
over the whole angular range. The structure of the data file is explained in Ref. [OH18].
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Sampling of the Final States

Sampling procedure is as the following:
1. atom is selected randomly according to the total cross section.

2. angular distribution functions are retrieved from data files according to the incident photon energy and atomic
number of the scattering atom.

3. polar angle is sampled based on the angular distribution function retrieved in 2.

4. azimuthal angle is sampled uniformly.

6.3 PhotoElectric Effect

The photoelectric effect is the ejection of an electron from a material after a photon has been absorbed by that material.
In the standard model G4PEEffectFluoModel it is simulated by using a parameterized photon absorption cross section
to determine the mean free path, atomic shell data to determine the energy of the ejected electron, and the K-shell
angular distribution to sample the direction of the electron.

6.3.1 Cross Section

The parameterization of the photoabsorption cross section proposed by Biggs et al.[BL88] was used:

Z,By) MZE) | d(ZE,)  d(Z E)
E, E2 E3 El

(2,5, = 4 (6.3)

Using the least-squares method, a separate fit of each of the coefficients a, b, ¢, d to the experimental data was per-
formed in several energy intervals [VMAPeal94][AGU+00]. As a rule, the boundaries of these intervals were equal
to the corresponding photoabsorption edges. The cross section (and correspondingly mean free path) are discontinu-
ous and must be computed ‘on the fly’ from the formula (6.3). Coefficients are defined for each Sandia table energy
interval.

If photon energy is below the lowest Sandia energy for the material the cross section is computed for this lowest
energy, so gamma is absorbed by photoabsorption at any energy. This approach is implemented coherently for models
of photoelectric effect of GEANT4. As a result, any media become not transparent for low-energy gammas.

The class G4StaticSandiaData.hh contains the corrected data table for the cross-section applied according to
the Sandia table with extra data taken from the Lebedev report. The coefficients are from Ref.[BL8S].

The first energy intervals and coefficients for Xe are corrected to correspond perfectly to the data of J.B. West et
al.[WM?78]. The coefficients are checked to correspond perfectly to the data from B.L. Henke et al. [eal82]. The
coeficients for Carbon are checked to correspond perfectly to the data of B.L. Henke et al. (as Xe). The first three
energy intervals and coefficients for C are corrected to correspond perfectly to the data of Gallagher et al. [eal88]. The
coefficients for Oxygen are checked to correspond perfectly to the data of B.L. Henke et al. (as Xe). The first two
energy intervals and coefficients for O are corrected to correspond perfectly to the data of Gallagher et al. (as C). The
coeficients for Hydrogen are checked to correspond perfectly to the data of B.L. Henke et al. (as Xe). The first three
energy intervals and coefficients for H are corrected to correspond perfectly to the data of L.C. Lee et al.[eal77]. The
first energy intervals and coefficients for He, Ne, Ar, and Kr are corrected to correspond perfectly to the data of G.V.
Marr et al.[MW76].

The most of ionisation energies are taken from S. Ruben[Rub85]. Twenty-eight of the ionisation energies have been
changed slightly to bring them up to date (changes from W.C. Martin and B.N. Taylor of the National Institute of
Standards and Technology, January 1990). Here the ionisation energy is the least energy necessary to remove to
infinity one electron from an atom of the element.
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6.3.2 Final State
Choosing an Element

The binding energies of the shells depend on the atomic number Z of the material. In compound materials the "
element is chosen randomly according to the probability:

natia(Zi, E’Y)
Zi[”ati 10 (E’Y)} .

Prob(Z;, E,) =

Shell

A quantum can be absorbed if E, > B,y where the shell energies are taken from G4AtomicShells data: the
closest available atomic shell is chosen. The photoelectron is emitted with kinetic energy:

Tphotoelectron = E“/ - Bshell(Zi)

Theta Distribution of the Photoelectron

The polar angle of the photoelectron is sampled from the Sauter-Gavrila distribution (for K-shell) [Gav59], which is
correct only to zero order in aZ:

~

d(cosf) (1 — Bcosf)*

do sin” 6 {1+;7(7_1)(7_2)(1—ﬂ6089)}

where 3 and -y are the Lorentz factors of the photoelectron.

Introducing the variable transformation v = 1 — cos 6., as done in Penelope, the angular distribution can be expressed
as

1 v
p(v)=(2-v) Ao + 557(’)’* (v —2) ma
where
E 1
:1 ¢ A: - 1
Y + mec27 ﬁ I

E, is the electron energy, m. its rest mass and [ its velocity in units of the speed of light c.

Though the Sauter distribution, strictly speaking, is adequate only for ionisation of the K-shell by high-energy photons,
in many practical simulations it does not introduce appreciable errors in the description of any photoionisation event,
irrespective of the atomic shell or of the photon energy.

6.3.3 Relaxation

Atomic relaxations can be sampled using the de-excitation module of the low-energy sub-package Aromic re-
laxation. For that atomic de-excitation option should be activated. In the physics_list sub-library this activa-
tion is done automatically for G4EmLivermorePhysics, G4EmPenelopePhysics, G4EmStandardPhysics_option3 and
G4EmStandardPhysics_option4. For other standard physics constructors the de-excitation module is already added
but is disabled. The simulation of fluorescence and Auger electron emission may be enabled for all geometry via Ul
commands:
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/process/em/fluo true
/process/em/auger true
/process/em/pixe true

Please see further detailed information on atomic deexcitation at http://geant4.web.cern.ch/node/1620.

There is a possibility to enable atomic deexcitation only for G4Region by its name:

/process/em/deexcitation myregion true true false

where three Boolean arguments enable/disable fluorescence, Auger electron production and PIXE (deexcitation in-
duced by ionisation).

6.3.4 Penelope Model

Total cross section

The total photoelectric cross section at a given photon energy F is calculated from the data [CHK®89], as described in
Generic Calculation of Total Cross Sections.

Sampling of the final state

The subshell from which the electron is emitted is randomly selected according to the relative cross sections of sub-
shells, determined at the energy E by interpolation of the data of Ref. [eal69]. The electron kinetic energy is the
difference between the incident photon energy and the binding energy of the electron before the interaction in the sam-
pled shell. The interaction leaves the atom in an excited state; the subsequent de-excitation is simulated as described
in Atomic relaxation.

6.3.5 Livermore Model

Three model classes are available G4LivermorePhotoElectricModel, G4LivermorePolarizedPhotoElectricModel, and
G4LivermorePolarizedPhotelectricGDModel.

Cross sections

The total photoelectric and single shell cross-sections are tabulated from threshold to 5 keV. Above 5 keV EPICS2014
cross sections [NEA] are parameterised in two different energy intervals, as following:

The intervals ranges are set dynamically and they depend on the atomic number of the element and the corresponding
k-shell binding energy. The accuracy of such parameterisation is better than 1%. To avoid tracking problems for very
low-energy gamma the photoelectric cross section is not zero below first ionisation potential but stay constant, so all
types of media are not transparent for gamma.

34 Chapter 6. Gamma incident



http://geant4.web.cern.ch/node/1620

Physics Reference Manual, Release 10.7

Sampling of the final state

The incident photon is absorbed and an electron is emitted.

The electron kinetic energy is the difference between the incident photon energy and the binding energy of the electron
before the interaction. The sub-shell, from which the electron is emitted, is randomly selected according to the relative
cross-sections of all subshells, determined at the given energy. The interaction leaves the atom in an excited state. The
deexcitation of the atom is simulated as described in Atomic relaxation.

Angular distribution of the emitted photoelectron

For sampling of the direction of the emitted photoelectron by default the angular generator
G4SauterGavrilaAngularDistribution is used. The algorithm is described in PhotoElectric Effect.

For polarized models alternative angular generators are applied.

G4LivermorePolarizedPhotoElectricModel uses the G4PhotoElectricAngularGeneratorPolarized angular generator.

This model models the double differential cross section (for angles € and ¢) and thus it is capable of account for polar-
ization of the incident photon. The developed generator was based in the research of Sauter in 1931 [Sau31][RHPA64].
Sauter’s formula was recalculated by Gavrila in 1959 for the K-shell [Gav59] and in 1961 for the L-shells [Gav6l].
These new double differential formulas have some limitations, o Z < 1 and have a range between 0.1 < 8 < 0.99c.

The double differential photoeffect for K—shell can be written as [Gav59]:

do 4 B3(1—%)3 waZ
%(97(;5) = WQ6Z5 [1 — (1 — B2)1/2} <F <1 — 5) +7TO[ZG>

where
sin?fcos?¢ 1 —(1—32)Y2 sin®6cos? ¢
(1—BcosO)r  2(1—p32) (1—Bcosh)?
[1—(1-8)Y2"  sin?0

4(1—p2)3/2 (1 —Bcosh)3

F =

G

cos 6 cos? p—

I e R e 4% sin®fcos? ¢ 48
= 27/252(1 —,80089)5/2 [(1 _62)1/2 1— Beosd + 11—

1—(1— 2\1/2 1—(1— 2\1/2 ~20
—4 (1_;;) (1—C082¢)—/82 (1_;) 1_SIZCOS9_
ey R L ey el
v S -

1-(1- 52)1/2 B 2 1-(1- 52)1/2

+ 4/62(1_ﬁ(:030)2 |:1—ﬂ2 - 1—62 COSGCOS2¢+ WCOSH
1_(1_62)1/2

e

where [ is the electron velocity, « is the fine—structure constant, Z is the atomic number of the material and 6, ¢ are
the emission angles with respect to the electron initial direction.

The double differential photoeffect distribution for L1-shell is the same as for K—shell aside from a constant [Gav61]:
1
B=¢-
¢ 8

where ¢ is equal to 1 when working with unscreened Coulomb wave functions as it is done in this development.
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Since the polarized Gavrila cross—section is a 2—dimensional non—factorized distribution an acceptance—rejection tech-
nique was the adopted [LP03]. For the Gavrila distribution, two functions were defined g1 (¢) and g2 (6):

91(¢) =a

ga(6) = —"

1 + 62
such that:

d’c
dodf

Agi(0)g2(0) =
where A is a global constant. The method used to calculate the distribution is the same as the one used in Low Energy
2BN Bremsstrahlung Generator, being the difference g1 (¢) = a.

G4LivermorePolarizedPhotoElectricGDModel uses its own methods to produce the angular distribution of the photo-
electron. The method to sample the azimuthal angle ¢ is described in [DLO6].

6.4 Compton scattering

The Compton scattering is an inelastic gamma scattering on atom with the ejection of an electron. In the standard sub-
package two model G4KleinNishinaCompton and G4KleinNishinaModel are available. The first model is the fastest,
in the second model atomic shell effects are taken into account.

6.4.1 Cross Section

When simulating the Compton scattering of a photon from an atomic electron, an empirical cross section formula is
used, which reproduces the cross section data down to 10 keV:
log(1 4 2X) N Py(Z) + P3(2)X 4+ Py(Z)X?

X 1+aX +bX24cX3

o(Z,B,) = | Pi(Z)

where

Z = atomic number of the medium
E., = energy of the photon

X = E,/mc®

m = electron mass

Pi(Z) = Z(di + e;Z + f; Z?).

The values of the parameters can be found within the method which computes the cross section per atom. A fit of the
parameters was made to over 511 data points [JHHOverbo80][SI70] chosen from the intervals

1< 7 <100

E. € [10keV, 100 GeV].

The accuracy of the fit was estimated to be

g - { ~ 10% for E, ~10keV —20keV

o <5—-6% for E,>20keV

To avoid sampling problems in the Compton process the cross section is set to zero at low-energy limit of cross section
table, which is 100 eV in majority of EM Physics Lists.
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6.4.2 Sampling the Final State

The Klein-Nishina differential cross section per atom is [KIN29]:
do 5 MeC? 1 esin’ 0
= - et 7|2 1>~
de e Ey [EJFE} { 1+€2
where

classical electron radius

Te
mec? = electron mass

Ey = energy of the incident photon

FE7 = energy of the scattered photon

EZEl/EO

Assuming an elastic collision, the scattering angle 8 is defined by the Compton formula:

MeC?

FEi=F .
! O mec® + Eo(1 — cos )

Sampling the Photon Energy

The value of € corresponding to the minimum photon energy (backward scattering) is given by

2

MeC
E@Qn = —Y—Y—Y—7-""—"—
0 ec? +2E,’

hence ¢ € [e,1]. Using the combined composition and rejection Monte Carlo methods described in

[BM60][MC70][NHRS85] one may set

esin? 0

20 = e |1 7] = 000 = [ al0) + afafe)] a0,
where

a; =In(1/€) ;o file) = 1/(aue)
as=(1-€)/2 ; fale) =¢/az.

f1 and fo are probability density functions defined on the interval [eg, 1], and

g(€) = [1— 1;2

sin? 9]
is the rejection function Ve € [eg,1] = 0 < g(e) < 1. Given a set of 3 random numbers 7,7, 7" uniformly
distributed on the interval [0,1], the sampling procedure for € is the following:
1. decide whether to sample from f1 () or fa(€): if r < a1 /(a1 + o) select f1(€), otherwise select fa(e)
2. sample € from the distributions corresponding to f or fs:
o for f :e=el (= exp(—1'ay))
e forfa:e?=e3+ (1 —€d)r'
3. calculate sin® § = t(2 — t) where t = (1 — cos0) = mec*(1 — €)/(Eoe)

4. test the rejection function: if g(e) > "’ accept €, otherwise go to step 1.
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Compute the Final State Kinematics

After the successful sampling of €, the polar angles of the scattered photon with respect to the direction of the parent
photon are generated. The azimuthal angle, ¢, is generated isotropically and 6 is as defined in the previous section.
The momentum vector of the scattered photon, P, 1, is then transformed into the World coordinate system. The kinetic
energy and momentum of the recoil electron are then

Ter = Eo — E4

— = =

Pel:Pfy0_P'y1-
Doppler broadening of final electron momentum due to electron motion is implemented only in G4KleinNishinaModel.
For that empirical electron density profile function is used.

6.4.3 Atomic shell effects

The differential cross-section described above is valid only for those collisions in which the energy of the recoil
electron is large compared to its binding energy (which is ignored). In the alternative model (G4KleinNishinaModel)
atomic shell effects are taken into account. For that a sampling of a shell is performed with the weight proportional to
number of shell electrons. Electron energy distribution function is approximated via simplified form

F(T) = exp (—T/Eb)/Eb,

where Ej, is shell bound energy, T is the kinetic energy of the electron.

The value T is sampled and scattering is sampled in the rest frame of the electron according the algorithm described
in the previous sub-chapter. After sampling an inverse Lorentz transformation to the laboratory frame is performed.
Potential energy (Ej, + 7)) is subtracted from the scattered electron kinetic energy. If final electron energy becomes
negative then sampling is repeated. Atomic relaxation are sampled if deexcitation module is enabled. Enabling of
atomic relaxation for Compton scattering is performed in the same way as for photoelectric effect Relaxation.

6.4.4 Penelope Model

Total cross section

The total cross section of the Compton scattering process is determined from an analytical parameterization. For
energy E greater than 5 MeV, the usual Klein-Nishina formula is used for o(E). For a more accurate parameterization
is used, which takes into account atomic binding effects and Doppler broadening [eal96]:

1 .2 ;72

E E E

o(E) =2m / 1 %E% (EC t 5T sin” 0) X Y [iO(E = Uini(p™) d(cos0) (6.4)
- shells
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where:
r. = classical radius of the electron;
m. = mass of the electron;
0 = scattering angle;
Ec = Compton energy
E
T+ %(1 — cosf)
fi = number of electrons in the *i*-th atomic shell;
U; = ionisation energy of the *1*-th atomic shell;
© = Heaviside step function;
p, = projection of the initial momentum of the electron in the direction of the scattering angle
Pl = highest possible value of p,
_ E(E—-U;)(1 —cos0) —mec®U;
B c\/2E(E —U;)(1 —cos ) + U2
Finally,
ni(z) =
%e[%*(%*\/i%owﬁ if 2<0
1 Lela=GHv270all if >0

where J;g is the value of the p,-distribution profile J;(p.) for the i-th atomic shell calculated in p, = 0. The values
of J;o for the different shells of the different elements are tabulated from the Hartree-Fock atomic orbitals of Ref.
[eal75].

The integration of Eq.(6.4) is performed numerically using the 20-point Gaussian method. For this reason, the initial-
ization of the Penelope Compton process is somewhat slower than the Low Energy Livermore process.

Sampling of the final state

The polar deflection cos 6 is sampled from the probability density function

7"3 E%’ EC E 2 max
P(COSQ) = Eﬁ(f—’_EiC — Sin 9) ; sz(E_UZ)nl(pz )
(see Ref. [eal01] for details on the sampling algorithm). Once the direction of the emerging photon has been set, the

active electron shell 4 is selected with relative probability equal to Z;0(F — U;)n;[p7***(E, 0)].

A random value of p, is generated from the analytical Compton profile [eal75]. The energy of the emerging photon is

E z
E = - Tt {(177tcosﬁ)+ |p |\/(lthCOSQ)Zf(lfth)(lft) ,
-7 Dz

where

( Dz )2 and Ec
= T = ——.
MeC E

The azimuthal scattering angle ¢ of the photon is sampled uniformly in the interval :math”:((0, 2pi))". It is assumed
that the Compton electron is emitted with energy E, = F — E’ — U;, with polar angle 6. and azimuthal angle
¢ = ¢ + m, relative to the direction of the incident photon. In this case cos . is given by

E — E'cosf
VE? + E? —2EE cosf
Since the active electron shell is known, characteristic x-rays and electrons emitted in the de-excitation of the ionized

atom can also be followed. The de-excitation is simulated as described in Aromic relaxation. For further details see
[ealO1].

cosf, =
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6.4.5 Livermore Model

Total Cross Section

The total cross section for the Compton scattering process is determined from the data as described in Generic Calcu-
lation of Total Cross Sections. To avoid sampling problems in the Compton process the cross section is set to zero at
low-energy limit of cross section table, which is 100 eV in majority of EM Physics Lists.

Sampling of the Final State

For low energy incident photons, the simulation of the Compton scattering process is performed according to the same
procedure used for the “standard” Compton scattering simulation, with the addition that Hubbel’s atomic form fac-
tor [Hub97] or scattering function, SF', is taken into account. The angular and energy distribution of the incoherently
scattered photon is then given by the product of the Klein-Nishina formula ®(¢) and the scattering function, SF'(q)
[Cul95]

P(e,q) = ®(e) x SF(q).
€ is the ratio of the scattered photon energy E’, and the incident photon energy E. The momentum transfer is given

by g = FE X sin2(9 /2), where 0 is the polar angle of the scattered photon with respect to the direction of the parent
photon. ®(¢) is given by

2

oox[td v

sin? 9] .
+ €
The effect of the scattering function becomes significant at low energies, especially in suppressing forward scatter-
ing [Cul95].

The sampling method of the final state is based on composition and rejection Monte Carlo methods
[BM60][MC70][NHR85], with the S F function included in the rejection function

g(e) = {1 i e sin? 9} x SF(q),
with 0 < g(€) < Z. Values of the scattering functions at each momentum transfer, g, are obtained by interpolating the

evaluated data for the corresponding atomic number, Z.

The polar angle 6 is deduced from the sampled € value. In the azimuthal direction, the angular distributions of both
the scattered photon and the recoil electron are considered to be isotropic [SteO3][NSJC04].

Since the incoherent scattering occurs mainly on the outermost electronic subshells, the binding energies can be

neglected, as stated in reference [Ste03][NSJC04]. The momentum vector of the scattered photon, P/, is transformed
into the World coordinate system. The kinetic energy and momentum of the recoil electron are then

T.,=E—FE

- > =
Py=PF,— P
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6.4.6 Monash University Low Energy Model

Introduction

The Monash Compton Scattering models, for polarised (G4LowEPPolarizedComptonModel) and non-polarised
(G4LowEPComptonModel) photons, are an alternative set of Compton scattering models to those of Livermore and
Penelope that were constructed using Ribberfors’ theoretical framework [Rib75][eal96][Kip04]. The limitation of the
Livermore and Penelope models is that only the components of the pre-collision momentum of the target electron con-
tained within the photon plane, two-dimensional plane defined by the incident and scattered photon, is incorporated
into their scattering frameworks [ealO1]. Both models are forced to constrain the ejected direction of the Compton
electron into the photon plane as a result. The Monash Compton scattering models avoid this limitation through the
use of a two-body fully relativistic three-dimensional scattering framework to ensure the conservation of energy and
momentum in the Relativistic Impulse Approximation (RIA) [Mon29][eal 14].

Physics and Simulation

Total Cross Section

The Monash Compton scattering models were built using the Livermore and Polarised Livermore Compton scattering
models as templates. As a result the total cross section for the Compton scattering process and handling of polarisation
effects mimic those outlined in Low Energy Livermore Model.

Sampling of the Final State

Q’

Fig. 6.1: Scattering diagram of atomic bound electron Compton scattering. P is the incident photon momentum, Q
the electron pre-collision momentum, P’ the scattered photon momentum and Q' the recoil electron momentum.

The scattering diagram seen in Fig. 6.1 outlines the basic principles of Compton scattering with an electron of non-zero
pre-collision momentum in the RIA.

The process of sampling the target atom, atomic shell and target electron pre-collision momentum mimic that outlined
in Low Energy Livermore Model. After the sampling of these parameters the following four equations are utilised to
model the scattered photon energy E’, recoil electron energy T.; and recoil electron polar and azimuthal angles (¢ and
1)) with respect to the incident photon direction and out-going plane of polarisation:

P yme (¢ — ucos @)

- 1—cosf + yme(c—wu cos 6 cos (xE,—usinasinacos,B) ’
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T.=E—-FE —Ep,
Y +VY2-4AWZ

cosp = i ,
costp = C — Bcos¢
~ Asing
where:
A= FE'u'siné,

B =FE'v cosf — Eu,
EFE'
¥'me

C=c(E' -F) (1 —cos®),

_ymkE'

D (¢ —ucosfcosa — usinf cos Bsina) + m2c? (v — 1) —y'mE’,

c
F= ('y’y’m2uu’ cos Bsina — w sin 9) ,
G = vy'mPuu sin Bsin a,
u' cos 9) ,
W = (FB - HA)® + G*A? + G*B?,
Y =2((AD — FC) (FB — HA) - G*BC),

/mE/

H= (W'y’m2uu’ cosa —

Z = (AD - FC)* + G* (C? - A?),
and c is the speed of light, m is the rest mass of an electron, v is the speed of the target electron, v’ is the speed of

the recoil electron, v = (1 — (u?/ 02))_1/ “andy’ = (1— (w?/ 02))_1/ ?. Further information regarding the Monash
Compton scattering models can be found in [eal 14].

6.5 Gamma Conversion into ete” Pair

In the standard sub-package two models are available.  The first model is implemented in the class
G4BetheHeitlerModel, it was derived from Geant3 and is applicable below 100 GeV. In the second
(G4PairProductionRelModel) Landau-Pomeranchuk-Migdal (LPM) effect is taken into account and this model
can be applied for high energy gammas (above 100 MeV). Alternative models for moderate energies are
G4BetheHeitlerSDModel, G4LivermoreGammaConversionModel, and G4PenelopeGammaConversionModel.

6.5.1 Cross Section

According [JHHOverbo80], [Hei54] the total cross-section per atom for the conversion of a «y into an (e™,e™) pair
has been parameterized as

0(Z,E) =Z(Z+1) |Fi(X)+ Fa(X) Z + @ , (6.5)

where E., is the incident gamma energy and X = In(E,/m.c?) . The functions F;, are given by
Fl(X) = Qg + alX + CL2X2 + CL3X3 + a4X4 + a5X5
Fo(X) = bo + b1 X + b2 X? + b3 X? + by X* + b5 X°
Fg(X) = Cp + 01X + CQX2 —+ 63X3 —+ C4X4 —+ C5X5,
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with the parameters a;, b;, ¢; taken from a least-squares fit to the data [JHHOverbo80]. Their values can be found in
the function which computes formula (6.5). This parameterization describes the data in the range

1< Z7<100
and
E, € [1.5MeV, 100 GeV].

The accuracy of the fit was estimated to be A o/0 < 5% with a mean value of ~ 2.2%. Above 100 GeV the cross
section is constant. Below Fj,,, = 1.5 MeV the extrapolation

E —2m.c? 2
Elow — 2mec?

o(E) = oBion) -

is used.

In a given material the mean free path, A, for a photon to convert into an (e*, e™) pair is
-1
)‘(Ev) = (Z Nati - U(ZzﬁEv))
i
where n,44; is the number of atoms per volume of the i*" element of the material.

Corrected Bethe-Heitler Cross Section

As written in [Hei54], the Bethe-Heitler formula corrected for various effects is

WD —arzziz+ 2N e + 0 - ) maGs(0) - £F
2 F(Z) ©6)
+ 3l [maoe) - T2 ||

where « is the fine-structure constant and r. the classical electron radius. Here e = E/E,,, E, is the energy of the
photon and E is the total energy carried by one particle of the (e™, e~ ) pair. The kinematical limits of ¢ are therefore

MeC?

E,

=¢e<e<1—¢.

Screening Effect

The screening variable, 9, is a function of €

136 €0

oe) = Z13 e(1—e)

and measures the ‘impact parameter’ of the projectile. Two screening functions are introduced in the Bethe-Heitler
formula:

20.867 — 3.2426 + 0.62552
20.209 — 1.9306 — 0.08652
Dy(8) = 21.12 — 4.1841n(6 + 0.952).

ford <1 @4(0)

~— —
|

foré >1 ®4(6

Because the formula (6.6) is symmetric under the exchange € <> (1 — ¢€), the range of € can be restricted to

€ € [e0,1/2].
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Born Approximation

The Bethe-Heitler formula is calculated with plane waves, but Coulomb waves should be used instead. To correct for

this, a Coulomb correction function is introduced in the Bethe-Heitler formula :

for E, <50MeV: F(z) = 8/3InZ

for B, >50MeV: F(z) = 8/3InZ+8f.(2)

with

fe(2) = (C“Z)Q m

5 +0.20206 — 0.0369(2vZ)” + 0.0083(Z)* — 0.0020(Z)® + - - -

It should be mentioned that, after these additions, the cross section becomes negative if

42.24 — F(2)
0 > dmax = ————| — 0.952.
> (e1) = exp [ 3368 ] 0.95
This gives an additional constraint on € :
1 1 Omi
6<6maz:> Z - 5 3 1_M
= TV T G

where

1 136
6mzn:6(6:2) :WZLGO

has been introduced. Finally the range of € becomes

€ € [€min = max(eg, €1), 1/2].

5|

Fig. 6.2: Calculation of € for gamma conversion.

Gamma Conversion in the Electron Field

The electron cloud gives an additional contribution to pair creation, proportional to Z (instead of Z2). This is taken

into account through the expression

~ In(1440/2%/3)
)= s/ - 1.2)

44

Chapter 6. Gamma incident



Physics Reference Manual, Release 10.7

Factorization of the Cross Section

€ is sampled using the techniques of ‘composition+rejection’, as treated in [FN78][BM60][MC70]. First, two auxiliary
screening functions should be introduced:
F1(0) = 301(0) — ©2(0) — FI(Z)
3 1
Fy(0) = §®1(5) - 5‘1)2(5) - F(Z)
It can be seen that F(0) and F»(0) are decreasing functions of §, V € [dynin, Omaz]- They reach their maximum for
F10 = maxFl((S) = Fl(émm)
F20 = Inang(é) = FQ((stn)
After some algebraic manipulations the formula (6.6) can be written:

do(Z,€)
de

= arZ(2 4 620 |5 = e | [0 110 10+ N2 £o©) )], 67)

where

le[%_emin]2F10 f1(€)=7[1 2 T [%—6]2 91(6)2%(06)

3 ~€min
Ny = %on f2(€) = const = ﬁ g2(€) = FFQT(OE)

3 ~€min
f1(e) and fa(€) are probability density functions on the interval € € [, 1/2] such that

1/2
file)de =1,

€min

and g1 (¢€) and go(¢) are valid rejection functions: 0 < g;(e) <1.

6.5.2 Final State

The differential cross section depends on the atomic number Z of the material in which the interaction occurs. In a
compound material the element ¢ in which the interaction occurs is chosen randomly according to the probability

natiU(Zi7 E’y)
> ilnati - oi(Ey)] .

Prob(Z;, E,) =

Sampling the Energy

Given a triplet of uniformly distributed random numbers (7, 7y, 7c) :
1. use 7, to choose which decomposition term in (6.7) to use:

if 7, < N1/(N1+ Na) — fi(€) gi(e)
otherwise — fa(€) ga2(€)

2. sample € from f1(€) or fo(e) with 1 :

)
1 1 1
€= 5 — (2 — Emin) T;/S or € = €Emin + <2 - 6min> b

3. reject e if g1 (€)or ga(€) < ¢

Note: below E, = 2 MeV it is enough to sample e uniformly on [eg, 1/2], without rejection.
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Charge

The charge of each particle of the pair is fixed randomly.

Polar Angle of the Electron or Positron

The polar angle of the electron (or positron) is defined with respect to the direction of the parent photon. The energy-
angle distribution given by Tsai [Tsa74][Tsa77] is quite complicated to sample and can be approximated by a density
function suggested by Urban [eal93] :

2
Yu € [0, oo f(u) = 991 7 [uexp(—au) + d uexp(—3au)] (6.8)
with
2
azg d =21 anin:%u.

A sampling of the distribution (6.8) requires a triplet of random numbers such that

9 —1 —1
ifri<——ou= M otherwise u = M
9+d a 3a

The azimuthal angle ¢ is generated isotropically. The e™ and e~ momenta are assumed to be coplanar with the
parent photon. This information, together with energy conservation, is used to calculate the momentum vectors of the
(e*,e™) pair and to rotate them to the global reference system.

6.5.3 Ultra-Relativistic Model

It is implemented in the class G4PairProductionRelModel and is configured above 80 GeV in all reference Physics
lists. The cross section is computed using direct integration of differential cross section [Tsa74][Tsa77] and not its
parameterisation described in Cross Section. LPM effect is taken into account in the same way as for bremsstrahlung
Bremsstrahlung of high-energy electrons. Secondary generation algorithm is the same as in the standard Bethe-Heitler
model.

6.5.4 Five-dimensional (5D) Bethe-Heitler gamma Conversion to e*e’

The G4BetheHeitlerSDModel generates the five-dimensional Bethe-Heitler differential cross section, that is, with a
correct target recoil momentum distribution both in magnitude and in direction (not necessarily in the pair plane).
Therefore the pair itself is also kicked transversely and the photon direction does not lie in the pair plane. This
model can be applied to both e*e” pairs (described here) and p T~ pair production (section Five-dimensional (5D)
Bethe-Heitler gamma Conversion to ).

The nuclear or triplet conversion of polarized or non-polarized photons on atomic or isolated-charge targets can be
performed.
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Total cross-section

The total cross section is inherited from the G4BetheHeitlerModel physics model. We take the nuclear, triplet share to
be Z/(Z+1),1/(Z + 1) . Pure nuclear or pure triplet samples can also be generated.

Sampling of the final state

In the conversion of a high-energy photon to an (e, ™) pair by interaction with the field of a nucleus or of an electron
of the detector, the final state contains three particles (electron, positron, “recoiling” target) and therefore is described
in a five-dimensional phase space.

Bethe and Heitler (BH) have obtained an analytical expression of the differential cross section for non-polarized
photons, in the first-order Born approximation and for a point-like, isolated charged-particle target [BH34]. The final-
state variables are the azimuthal angles ¢ and ¢_ and the polar angles 6, and 6_ of the positron and of the electron,
respectively, and the fraction of the photon energy carried away by the positron z, = E, /E.

The differential cross section for fully polarized photons has been obtained by [BM50], put in BH notation by [May51],
after which [JR76] have corrected a numerical factor. At this first order of the Born development, only the linear photon
polarization takes part to the differential cross section. Therefore no polarization is transfered to the final leptons.

The generation of the probability density function for this differential cross section is made difficult by the presence
of a number of divergences, in 1/(E, — Py cosfy), in 1/(E_ — P_cosf_) and in 1/¢*, where q is the “recoil”
momentum, that is, the momentum transfered to the target. Further more the divergences take place in functions of
several of the kinematical variables in which the differential cross section is written, (¢, ¢_, 04, 6_, x ), thatis, in
a correlated way in their space.

The correlation issue is solved in the usal way in high-energy physics: each step is performed in the appropriate
Lorentz frame. The interaction between the photon and the target is performed in the center-of-mass system (CMS);
an object having an invariant mass /s is “created”. The invariant mass of the pair is taken at random. The “decay” of
that /s thing to the recoiling target and to the pair is generated in the CMS. The decay of the pair to an actual electron
and a positron is performed in the pair Lorentz frame. The two leptons are then boosted back to the CMS. Finally
every body is boosted back to the laboratory frame. The variables used to do so are defined in Table 6.3.

Table 6.3: Kinematic variables and the Lorentz frame in which they are
defined.

variable Lorentz frame
6 | target and pair polar angle CMS

i | ete” invariant mass
0, | e and e~ polar angle pair frame
¢¢ | et and e~ azimuthal angle pair frame
¢ | target and pair azimutal angle | CMS

As the distribution of these variables still show divergences, a change of variables is used ( Table 6.4 ). The z;,¢ =
1---5 are taken flat. The photon-energy-dependent bounds of the x; segment and the z; distributions can be found in
Fig. 1 and in Fig. 3, respectively, of [Ber18].

Table 6.4: Relationship between the generator variables, x;,¢ = 1---5,
and the kinematic variables, and their range.

i Jacobian x; range
1| cosf = %, Y= exp(fl) ﬁ [T11, Z14)
2 | = pmin X (frange)”? 2x31og (Krange)pt | [0,1]

3 | costy =3 | sin 6] 0, 7

4| pe=1a4 1 —m, 7]
5| ¢=us 1 [—7, 7]
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The algorithm is described with some detail in the documentation of the fortran demonstration model [Ber18] and its
C++ implementation in [SB19]. The normalization of the phase space of the final state in this case of cascade “decays”
is described in the PDG, Sect. 47.4.3 of [Gro16]. We get:

1 1

2
= *Ipy| dp dX% A,

where (p?, €% ) refers to the kinematic variables of the positron in the pair rest frame and (p,, £2,.) to the kinematic
variables of the target recoil in the CMS. We obtain:

—a2273 o3 lpem?M

(2m)?  E3/s|q

do = H x X dpdSy, dQ,, with : H =

For an unpolarized photon [BH34]:
_ pysinfy ’ 2 2 p—sinf_ ’ 2 2
Xu = <E+ — Dt c059+> MEZ —a))+ (E —p- Cosﬂ) UEy —a)+
2pip_sinfy sinf_ cos (¢4 — P—)
(E- —p_cosO_)(Ey — pycosfy)
For a polarized photon [BM50][May51][JR76]:

o, P= sinf_ cos ¢_ oy Py sinfy cos ¢ 2 o (p—sinf_cos¢_  pysinfycos¢y 2
Y E_ —p_cosb_ ~ Ei —pycosfy E_—p_cosf_ EL —pycosfy

6.9
(psind )2 4 (psing_)?

(Ey —pycosty)(E_ —p_cosf_)’

AE.E_ + ¢*> — 2E?%) — 2E*
+

Xp=2

g2 (pysin®y)? + (p_sinf_)? + 2p,p_sinf sinf_ cos (¢4 — gi)_)]

(E- —p_cosO_)(Ey — pycosby)
(6.10)

with [q]? = [p1 +p> — k%

In case the nucleus or the electron are not isolated but are part of an atom, the screening of the target field by the
(other) electrons of the atom is described by a function of g2, a coherent form factor [NFM34] for nuclear conversion,
an incoherent form factor [WL39] for triplet conversion.

In contrast with the BH expressions taken at face value, for which the recoil energy is neglected and the electron
energy is taken to be E_ = E' — E/, here a strict energy-momentum conservation is achieved.

A number of approximations are used:

* For triplet conversions, BH neglects the e — v exchange diagrams, which might be an issue at low energy (see
Table 1, Fig.3 and their discussion in [Mor67]).

* Landau-Pomeranchuk-Migdal (LPM) suppression effects at very high energies are neglected.
* The finite size of the nucleus is neglected.

* Any pre-existing non-zero momentum of the target prior to the conversion, such as in the case of Compton
“Doppler” broadening, is not considered.

A number of verifications of the model have been performed by comparison with analytical expressions of the dis-
tribution of one of the kinematic variables, obtained in the past from partial integrations of the BH differential cross
section. In particular the distribution of the pair opening angle is found [Ber13a] to take its most probable value at the
high-energy asymptotic value of 1.6 MeV rad [Ols63]. The G4BetheHeitlerSDModel is the only gamma-conversion
physics model for which the recoil momentum distribution is found [Ber13b][GB17] to be compatible with the ana-
lytical expression of [JLS50]. See also the extended electromagnetic example TestEml5.

The verification of the integral of the differential cross section over the full z;,% = 1---5 phase space can be found
in Fig. 4 of [Berl8], for atomic targets (comparison with total cross section NIST data) and for isolated charges
(comparison with total cross section asymptotic expressions).

The verification of the polarization properties of the model are addressed in Section 13.10.
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6.5.5 Penelope Model

Total cross section

The total cross section of the + conversion process is determined from the data [BH87], as described in Generic
Calculation of Total Cross Sections.

Sampling of the final state

The energies E_ and E; of the secondary electron and positron are sampled using the Bethe-Heitler cross section
with the Coulomb correction, using the semiempirical model of Ref. [eal94]. If

_E_+ MeC?
N E

€

is the fraction of the y energy E which is taken away from the electron,

K= 5 and a=aZz,
MeC

the differential cross section, which includes a low-energy correction and a high-energy radiative correction, is

d 2 1 2
Z =122 +0)C, 5 [2(5 —€) 6100+ 62(0)], (6.11)

where:
7 2 -1
¢1(e) = 3 2In(1 + b°) — 6barctan(b™")

—b?[4 — 4barctan(b™ ') — 3In(1 + b~ 2)]
+ 4In(Rmec/h) —Afc(Z) + Fo(k, 2)

and
11 9 1
pa(e) = 5" 2In(1 + b°) — 3barctan(b™")
1
+ §b2[4 — 4barctan(b™') — 31In(1 + b~?)]
+4In(Rmec/h) — Afc(Z) + Fy(k, Z),

with

b_Rmeci 1
o h 2ke(l—¢)

In this case R is the screening radius for the atom Z (tabulated in [JHHOverbo80] for :math:(Z=1) to 92) and 7 is the
contribution of pair production in the electron field (rather than in the nuclear field). The parameter 7 is approximated
as
n=nw(l—e""),
where
v = (0.2840 — 0.1909a) In(4/x) + (0.1095 + 0.2206a) In*(4/k)
+ (0.02888 — 0.04269a) In®(4/k) 4 (0.002527 + 0.002623) In* (4/)
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and 7., is the contribution for the atom Z in the high-energy limit and is tabulated for Z = 1 to 92 in Ref.
[JHHOverbo80]. In the Eq.(6.11), the function fo(Z) is the high-energy Coulomb correction of Ref. [eal54], given
by

fo(Z) = a®[(1 4 @)™ +0.202059 — 0.03693a? + 0.00835a"
—0.00201a® + 0.00049a® — 0.00012a*° 4 0.00003a*?];

C, = 1.0093 is the high-energy limit of Mork and Olsen’s radiative correction (see Ref. [JHHOverbo80]); Fo(x, Z)
is a Coulomb-like correction function, which has been analytically approximated as [ealO1]

Fy(k, Z) = (—0.1774 — 12.10a + 11.18a2)(2/k)/?
+ (8.523 + 73.26a — 44.41a%)(2/K)
— (13.52 4+ 121.1a — 96.41a%)(2/k)>/?

+ (8.946 + 62.05a — 63.41a%)(2/K)>.

The kinetic energy E; of the secondary positron is obtained as
E,=E—E_ —2m.?*.

The polar angles #_ and 6, of the directions of movement of the electron and the positron, relative to the direction
of the incident photon, are sampled from the leading term of the expression obtained from high-energy theory (see
Ref.[eal69])

p(cosfs) = a(l — fx cosfi) 2,

where a is the a normalization constant and S is the particle velocity in units of the speed of light. As the directions
of the produced particles and of the incident photon are not necessarily coplanar, the azimuthal angles ¢_ and ¢ of
the electron and of the positron are sampled independently and uniformly in the interval (0, 27).

6.5.6 Livermore Model

Total cross-section

The total cross-section of the Gamma Conversion process is determined from the EPDL97 data as described in Low
Energy Livermore Model.

Sampling of the final state

For low energy incident photons, the simulation of the Gamma Conversion final state is performed according to Final
State.

The secondary e energies are sampled using the Bethe-Heitler cross-sections with Coulomb correction.

The Bethe-Heitler differential cross-section with the Coulomb correction for a photon of energy E to produce a pair
with one of the particles having energy e E (e is the fraction of the photon energy carried by one particle of the pair) is
given by [FN78]:

dO’(iEE,G) _ TO&Z(ZE;— g(Z)) |:(€2 + (1 _ 6)2) (@1(5) _ F‘;Z)) + ;6(1 _ 6) (@2((5) _ ng)>:| (612)

where ®,(6) are the screening functions depending on the screening variable 6 [eal93].

The value of € is sampled using composition and rejection Monte Carlo methods [eal93][BM60][MC70].

50 Chapter 6. Gamma incident



Physics Reference Manual, Release 10.7

After the successful sampling of €, the process generates the polar angles of the electron with respect to an axis
defined along the direction of the parent photon. The electron and the positron are assumed to have a symmetric
angular distribution. The energy-angle distribution is given by [Tsa74][Tsa77]:

do 20%¢* | [2x(1— z)? ~ 1202(1 —2)
dpdQ  mkmA (141 (1410)*
222 — 22 +1 n 4lz(l — x)
(1+1)? (1+10)"

) (Z°+ 2)+

) (x = 22f((a2)?)]

where k is the photon energy, p the momentum and F the energy of the electron of the e* pair + = E/k and
| = E%6% /m?. The sampling of this cross-section is obtained according to [eal93].

The azimuthal angle ¢ is generated isotropically.

This information together with the momentum conservation is used to calculate the momentum vectors of both decay
products and to transform them to the GEANT4 coordinate system. The choice of which particle in the pair is the
electron/positron is made randomly.

6.6 Livermore Triple Gamma Conversion

The class G4BoldyshevTripletModel was developed to simulate the pair production by linearly polarized gamma
rays on electrons For the angular distribution of electron recoil we used the cross section by Vinokurov and Ku-
raev [VK72][VK73] using the Borsellino diagrams in the high energy For energy distribution for the pair, we used
Boldyshev [VFBP94] formula that differs only in the normalization from Wheeler-Lamb. The cross sections include
a cut off for momentum detections [MLI11].

6.6.1 Method

The first step is sample the probability to have an electron recoil with momentum greater than a threshold define by
the user (by default, this value is py = 1 in units of mc). This probability is

82 14 4
o(p > po) = arg ( <5 I Xo+ 75 X0 - 0.0348 X7 + 0.008X§ — )

27 9
Xo=2 (\/p%—&- - 1) .
Since that total cross section is o = ar? (32 In2E, — %2), if a random number is £ > o(p > py)/o we create the

electron recoil, otherwise we deposited the energy in the local point.

6.6.2 Azimuthal Distribution for Electron Recoil

The expression for the differential cross section is composed of two terms which express the azimuthal dependence as
follows:

do = do® — PdoV cos(2¢)

Where both do ;) and do;) are independent of the azimuthal angle, ¢, referred to an origin chosen in the direction of
the polarization vector P of the incoming photons.
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6.6.3 Monte Carlo Simulation of the Asymptotic Expression
In this section we present an algorithm for Monte Carlo simulation of the asymptotic expressions calculate by Vi-
nokurov et.al. [VK72][VK73].

We must generate random values of 6 and ¢ distributed with probability proportional to the following function f (6, ),
for 0 restricted inside of its allowed interval value [VFBP94] (0, or 6,42 (po)):

10 9) = Z2EL(R(0) - Peos(20)Fp(0)) 6.13
Fi(0)=1- % In(cot(8/2))
sin? 0
Fp(0)=1- p—"z In(cot(0/2))

As we will see, for § < 7/2, F; is several times greater than F'p, and since both are positive, it follows that f is
positive for any possible value of P (0 < P < 1).

Since F} is the dominant term in expression (6.13), it is more convenient to begin developing the algorithm of this
term, belonging to the unpolarized radiation.

6.6.4 Algorithm for Non Polarized Radiation

The algorithm was described in Ref.[DI09]. We must generate random values of 6 between 0 and 0,,,. =
arccos (]31;7;"62 + chM) , B1 = \/p3 + (mc?)? distributed with probability proportional to the following

E~po
function f7(0):

sin — 5 cos?
nie) = 250 (1= 222 P wnceon(o2))
_ sin(0)
~ cos3(6) < F1(0)

By substitution cos(6/2) = /158 and sin(6/2) = |/ 1=52¢ | we can write:

eio72) = 1 (1220

1—cosf

In order to simulate the f; function, it may be decomposed in two factors: the first, sin(8)/ cos®(), easy to integrate,
and the other, F}(#), which may constitute a reject function, on despite of its § = 0 divergence. This is possible
because they have very low probability. On other hand, € values near to zero are not useful to measure polarization
because for those angles it is very difficult to determine the azimuthal distribution (due to multiple scattering).

Then, it is possible to choose some value of 6, small enough that it is not important that the sample is fitted rigorously
for § < 6, and at the same time F; (6) is not too big.

Modifying F} so that it is constant for § < 6y, we may obtain an adequate reject function. Doing this, we introduce
only a very few missed points, all of which lie totally outside of the interesting region.

Expanding F for great values of 8, we see it is proportional to cos?6:
14 33
Fi(0) — ECOSQQ <1+ 35(30829+...> , if0—m/2

Thus, it is evident that F; divided by cos?(6) will be a better reject function, because it tends softly to a some constant
value (14/3 = 4,6666...) for large 0, whereas its behavior is not affected in the region of small 8, where cos(6) — 1.
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It seems adequate to choose 6y near 5°, and, after some manipulation looking for round numbers we obtain:

Fy (4.47°)

—— 2 174.00
cos? (4.47°)

Finally we define a reject function:

Fi(0
r®) = ﬁcoslz((e;) = 214(:0152(0)
1—5cos“(6 cos 6 .
(1 - 2cos(9§ Lin (}J_rcosg)) . for 6 > 4.479
r(@) = 1 . for 6 < 4.479

Now we have a probability distribution function (PDF) for 6, p(8) = C f1(6), expressed as a product of another PDF,
m(6), by the reject function:

p(0)=Cf(0)=Cn(0)r(0)

where C'is the normalization constant belonging to the function p(f).

One must note that the equality between C' ~ f1(6) and C'7(6)r(0) is not exact for small values of 6, where we have
truncated the infinity of F} (6); but this can not affect appreciably the distribution because f; — 0 there. Now the PDF
m(0) is:

14 sin(6)
0)=C, ———=
() cos(0)
From the normalization, the constant C'; results:
1 -1 1 w
c, - . “ln(2)
14 foamaw %((Z))de 141n (cos(Omaz)) 7 4m
And the relation with C' is given by:
1
C=—F"——=20C,

Jome fa(6)de

Then we obtain the cumulative probability by integrating the PDF 7 (6):

—141n(cos(0)) _ 21n(cos(0))
7In (%) In (4m/w)

4m

0
P, — / (0)d6 =
0
Finally for the Monte Carlo method we sample a random number £; (between 0 and 1), which is defined as equal to

P, , and obtain the corresponding 6 value:

~ 2In(cosf)  In(cos®)
© In(4m/w)  In(cos(fmax))

&1

Then,

&
4m\ 2
f = arccos —
w

Another random number &5 is sampled for the reject process: the 0 value is accepted if & < r(6), and reject in the
contrary.

For § < 4.47° all values are accepted. It happens automatically without any modification in the algorithm previously
defined (it is not necessary to define the truncated reject function for 6 < 6y).
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6.6.5 Algorithm for Polarized Radiation

The algorithm was also described in Ref.[DI09]. As we have seen, the azimuthal dependence of the differential cross
section is given by the expressions and:

160, 0) = 20 (1 (0) — P eos(20)F(6))

cos3 6

.2
sin® 6
Fp(0) =1- cosf

In(cot(6/2))
We see that Fip tends to 1 at § = 0, decreases monotonically to 0 as 6 goes to 7/2.

Furthermore, the expansion of Fp for § near 7/2 shows that it is proportional to cos?(f), in virtue of which
Fp/ cos?(0) tends to a non null value, 2/3. This value is exactly 7 times the value of F} / cos? ().

This suggests applying the combination method, rearranging the whole function as follows:

7(6,) = tan(0) ;2((99)) (1 _ cos@gp)p?j((g)))

and the normalized PDF p(6, ¢):

p(0,0) =Cf(0,9)

where C is the normalization constant
1 Omax 27
=[] 10 api
0 0

Taking account that f027r cos(2¢) dp = 0, then:

1 B Omax Fl (0)
ol 27r/0 tan(@)cos2(9)d9

On the other hand the integration over the azimuthal angle is straightforward and gives:

00) = [ 96,910 = 2Ctan(0) 10

and p(p/0) is the conditional probability of ¢ given 0:

Cp(0,9) 1 sin(6) _ cos
el = ) e C o () (1 cos20P g

cos2(0)

= % (1 - cos(2<p)P};T((g))>

Now the procedure consists of sampling 6 according the PDF ¢(0); then, for each value of § we must sample ¢
according to the conditional PDF p(¢/0).

Knowing that F7 is several times greater than F'p, we can see that P F' /Fp < 1, and thus p(p/6) maintains a nearly
constant value slightly diminished in some regions of ¢. Consequently the ¢ sample can be done directly by the
rejecting method with high efficiency.

~

On the other hand, ¢(6) is the same function p(f) given by , that is the PDF for unpolarized radiation, ¢(6) =
C'm(0)r(0), so we can sample 0 with exactly the same procedure, specified as follows:

1. We begin sampling a random number £; and obtain 6 from :

s

1

0 = arccos —
w
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2. Then we sample a second random number &5 and accept the values of 6 if & < r(6), where r(0) is the same

expression defined before:
1 1 —5cos?6 14 cosf
0) = 1— 1
r(®) 14 cos? 0 { 2cosf n(l—cos@ﬂ

For 0 > 4.47° and for § < 4.47° all values are accepted.

3. Now we sample ¢. According to the reject method, we sample a third random number &3 (which is defined as
/27) and evaluate the reject function (which is essentially):

(en) = 5= (1 cos (i) P

_ 1 (1 _ cos(4nés) P cosf — sin? 0 1n gcot (g)) )

i)

2 cosf — (1 —5cos?6) In (cot (§))

4. Finally, with a fourth random number &, , we accept the values of ¢ = 2w, if & < rg(&3).

6.6.6 Sampling of Energy

For the electron recoil we calculate the energy from the maximum momentum that can take according with the 6 angle

(5 + (me?)?)

E,. =
me 9
where
S = c? (2Egamma + ch)
D2 = 4Smc*+ (S - (m02)2)2 sin?(0)

The remnant energy is distributed to the pair according to the Boldyshev formula [VFBP94] (z is the fraction of the
positron energy):

d2

o
dzdd

= 2047“0 {[1 =22 (1 — )] J1(po) + 2z (1 — z) [1 — Pcos(d)] J2(po)}

Ja&m)=:2<tgﬁﬁg;-hm2gnhu»)

cosh(t) = sinh(t) — t cosh®(t)
sinh(¥) 3sinh®(t)
This distribution can by written like a PDF for z:

2
Ja(po) = ~3 In(2sinh(t)) + ¢ ; sinh(2¢) =
Px)=N(1-Jz(1—-2x))
where N is a normalization constant and J = (J; — J2)/J1. Solving for x (¢ is a random number):

a” J-4 1

= 2 1/3 + 5
aq = (- 6+12rn+J+2a)J2
0 = (16 3.J— 36r,,+36Jr +6rnJ2)
Tn = € 1 - 7)
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6.7 Gamma Conversion into "y~ Pair

The class G4GammaConversionToMuons simulates the process of gamma conversion into muon pairs. Given the
photon energy and Z and A of the material in which the photon converts, the probability for the conversions to take
place is calculated according to a parameterized total cross section. Next, the sharing of the photon energy between
the 4+ and p~ is determined. Finally, the directions of the muons are generated. Details of the implementation are
given below and can be also found in [BKKO02].

6.7.1 Cross Section and Energy Sharing

Muon pair production on atomic electrons, y+e — e+p " +p 7, has a threshold of 2m, (m, +m.)/m. ~ 43.9 GeV .
Up to several hundred GeV this process has a much lower cross section than the corresponding process on the nucleus.
At higher energies, the cross section on atomic electrons represents a correction of ~ 1/Z to the total cross section.

For the approximately elastic scattering considered here, momentum, but no energy, is transferred to the nucleon. The
photon energy is fully shared by the two muons according to

E,=Ef+E;
or in terms of energy fractions
ET E;
H 2
Ty = — T = —, Ty +ax_=1.
E,’ E,

The differential cross section for electromagnetic pair creation of muons in terms of the energy fractions of the muons
is
do

4
2 —tazr? (1 - ;m_) log (W) . (6.14)

where Z is the charge of the nucleus, r, is the classical radius of the particles which are pair produced (here muons)
and

14 (Dnyve—2)0/m,

W =Wy 6.15
1+ BZ-1Y3./ed /me ( )
where
BZ 13 m m?
Wy = —— £ §=—"r = 1.6487....
o D, Me 2E 2 x_ Ve

For hydrogen, B = 202.4 and D,, = 1.49. For all other nuclei, B = 183 and D,, = 1.54A49-27,

These formulae are obtained from the differential cross section for muon bremsstrahlung [KKP95] by means of cross-
ing relations. The formulae take into account the screening of the field of the nucleus by the atomic electrons in the
Thomas-Fermi model, as well as the finite size of the nucleus, which is essential for the problem under consideration.
The above parameterization gives good results for £, > m,,. The fact that it is approximate close to threshold is of
little practical importance. Close to threshold, the cross section is small and the few low energy muons produced will
not travel very far. The cross section calculated from Eq.(6.14) is positive for £, > 4m,, and

My

+ B

N | =
| =

. my
Tmin < T < Tmax with LTmin = 5 - - E Tmax =
2l

=

except for very asymmetric pair-production, close to threshold, which can easily be taken care of by explicitly setting
o = 0 whenever o < 0.
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Note that the differential cross section is symmetric in 4 and x_ and that
T v =x— 1’
where z stands for either x4 or z_. By defining a constant
oo =4aZ?r?log(Wy) (6.16)

the differential cross section Eq.(6.14) can be rewritten as a normalized and symmetric as function of x:

1 do _ 1—é(x—x2) log W
oo dr 3 log Wy,

6.17)

This is shown in Fig. 6.3 for several elements and a wide range of photon energies. The asymptotic differential cross
section for £, — 0o

is also shown.

do
G dx

04 100 GeV

X

Fig. 6.3: Normalized differential cross section for pair production as a function of x, the energy fraction of the photon
energy carried by one of the leptons in the pair. The function is shown for three different elements, hydrogen, beryllium
and lead, and for a wide range of photon energies.

6.7.2 Parameterization of the Total Cross Section

The total cross section is obtained by integration of the differential cross section Eq.(6.14), that is

Tmax d Tmax 4
oot (Ey) = / i dry =4aZ?r? / (1 -3 x+x> log(W) dz . (6.18)

min Tmin

W is a function of (z, E,) and (Z, A) of the element (see Eq.(6.15)). Numerical values of W are given in Table 6.5.
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Table 6.5: Numerical values of W for x = 0.5 for different elements.

E, [GeV] | WiorH | WforBe | W for Cu | W for Pb
1 2.11 1.594 1.3505 5.212

10 19.4 10.85 6.803 43.53
100 191.5 102.3 60.10 332.7
1000 1803 919.3 493.3 1476.1
10000 11427 4671 1824 1028.1
o0 28087 8549 2607 1339.8

Values of the total cross section obtained by numerical integration are listed in Table 6.6 for four different elements.
Units are in gbarn, where 1 ybarn = 10734 m?2.

Table 6.6: Numerical values for the total cross section

E, [GeV] | otor, Hpbarn] | oo, Be [ubarn] | oo, Cu [pbarn] | oo, Pb [ubarn |
1 0.01559 0.1515 5.047 30.22
10 0.09720 1.209 49.56 334.6
100 0.1921 2.660 121.7 886.4
1000 0.2873 4.155 197.6 1476
10000 0.3715 5.392 253.7 1880
0 0.4319 6.108 279.0 2042
1 ——
09F .
08F /!
07E
8 0.6F /
© C II
o 0.5 E_
04 F A
03F //
0.2;— H ,,' Pb
01f /,/
0 : /: llllllll 1 llllllll 1 llllllll 1 llllllll 1 llllllll 1 llllll.ll 1 llllll.ll 11

110 10% 10° 10* 10° 10° 107 10®

Ey in GeV

Fig. 6.4: Total cross section for the Bethe-Heitler process v — u*p~ as a function of the photon energy E. in
hydrogen and lead, normalized to the asymptotic cross section 0.

Well above threshold, the total cross section rises about linearly in log(E.,) with the slope

1
4D, \Jem,

until it saturates due to screening at 0. Fig. 6.4 shows the normalized cross section where

W

7
Ooo = §Uo and oo=4aZ? rg log(Wso) -
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Numerical values of W) are listed in Table 6.7.

Table 6.7: Numerical values of Wj,.

Element | Wy, [1/GeV]
H 0.963169
Be 0.514712
Cu 0.303763
Pb 0.220771

The total cross section can be parameterized as

28a Z%r?

Opar = TC log(1 + WMCng) , (6.19)

with

4ml’« ' s s\1/s

By= (122 ) Wac+ B
¥
and
2
Went = % — BZ~1/3 @ )
W Me

The threshold behavior in the cross section was found to be well approximated by ¢t = 1.479 + 0.00799D,, and the
saturation by s = —0.88. The agreement at lower energies is improved using an empirical correction factor, applied
to the slope W, of the form

E.
Cr= [1 + 0.04 log <1 + ﬂ ,
£,

where

4347.

Ec = |:—18. + W

] GeV .

A comparison of the parameterized cross section with the numerical integration of the exact cross section shows that
the accuracy of the parametrization is better than 2%, as seen in Fig. 6.5.

1.02
. 101 Pb
a [+ ,'I,.C-:.l,’lb“
© 1 F\..- ‘ - ‘_‘}1&-—:\“
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© o EH
0.98 Tlllll 11 lllllll 11 lllllll 11 llllllI 1 llllllll 11 |||I||I 11 lllllll L1 lllll.ll L L

110 102 100 10" 10° 10° 107 10®

E, in GeV

Fig. 6.5: Ratio of numerically integrated and parametrized total cross sections as a function of £, for hydrogen,
beryllium, copper and lead.
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6.7.3 Multi-differential Cross Section and Angular Variables

The angular distributions are based on the multi-differential cross section for lepton pair production in the field of the
Coulomb center

do 47%0% m?, y
= —L
dzy duy du_ dp 7r q* +
{ ui +ut 5 ul N u? 2uiu_(1 -2z 2_) cosgo}
—2x.x_ — )
Q+u2)(1+u2) T A +a)? T (1 +u?)? 1+ud)(1+ul)
(6.20)
Here
E:t
ur=v£0s . =t . F=q+d4 (6.21)
My
where
2_ 2 2 242
q) = 49min ].+£C,’LL +xyu” )
i ( T aiul) 622

@ = mi [(uy —u_)?+2uru_(1—cosy)] .

q? is the square of the momentum q transferred to the target and qﬁ and ¢% are the squares of the components of the
vector g, which are parallel and perpendicular to the initial photon momentum, respectively. The minimum momentum
transfer is g, = mi /(2E., x1x_). The muon vectors have the components

P+ = p+( sinficos(po+¢/2), sinfysin(po+¢/2), cosby), (6.23)
p— = p_(—siné_cos(po — p/2), —sinf_sin(pe — ¢/2), cosb_), ’

where p1 = 4 /Ei — mﬁ. The initial photon direction is taken as the z-axis. The cross section of Eq.(6.20) does not
depend on ¢g. Because of azimuthal symmetry, ¢ can simply be sampled at random in the interval (0, 2 7).
Eq.(6.20) is too complicated for efficient Monte Carlo generation. To simplify, the cross section is rewritten to be

symmetric in uy, u_ using a new variable u and small parameters £, 5, where uyx = u £ £/2 and 8 = up. When
higher powers in small parameters are dropped, the differential cross section in terms of u, £, 5 becomes

do 47%8 ms,

dz, d€dBudu X

2
" (qﬁ +m (62 +32)) (6.24)

S

where, in this approximation,
2 2 212
q = Gomin (1 +u7)".

For Monte Carlo generation, it is convenient to replace (¢, 5) by the polar coordinates (p, 1) with £ = p cosy and
B = p sin . Integrating Eq.(6.24) over 1 and using symbolically du? where du? = 2u du yields

do _ _42%° P’ -z wye (1—u?)? 6.25
drydpdu® — m2  (qi/m2+p?)? | (1+u?)? 1+u)t [ (6.25)

Integration with logarithmic accuracy over p gives

1
(qf /m3, + p?)? p q

‘I||/mu
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Within the logarithmic accuracy, log(m,,/q|) can be replaced by log (1, /gmin), so that

do 47?7 {1 —zpr wyr (1- u?)? } log ( my )

doy du?>  m2 (1+u?)? (1+u?)*

Gmin
Making the substitution u? = 1/t — 1, du® = —dt /t* gives

do 74Z20z3
dry dt m?

-2z 2 +4z 2 t(1—1t)] log (’"‘) . (6.26)
Gmin

Atomic screening and the finite nuclear radius may be taken into account by multiplying the differential cross section

determined by Eq.(6.24) with the factor

(Fa(Q) - Fn(Q) )2 ’

where F, and F), are atomic and nuclear form factors. Please note that after integrating Eq.(6.25) over p, the g-
dependence is lost.

6.7.4 Procedure for the Generation of "y~ Pairs

Given the photon energy F, and Z and A of the material in which the -y converts, the probability for the conversions
to take place is calculated according to the parametrized total cross section Eq.(6.19). The next step, determining how
the photon energy is shared between the 1+ and p~, is done by generating =, according to Eq.(6.14). The directions
of the muons are then generated via the auxilliary variables ¢, p, ©. In more detail, the final state is generated by
the following five steps, in which 21 2 3 4, .. are random numbers with a flat distribution in the interval [0,1]. The
generation proceeds as follows.

1. Sampling of the positive muon energy Ef[ = z4 E,. This is done using the rejection technique. x is first
sampled from a flat distribution within kinematic limits using

T4 = Tmin + Rl (xmax - xmin)

and then brought to the shape of Eq.(6.14) by keeping all x; which satisfy

4 log(W)
1—- | — .
( 3 > log(Winax) < I

Here Winax = W (x4 = 1/2) is the maximum value of W, obtained for symmetric pair production at x = 1/2.
About 60% of the events are kept in this step. Results of a Monte Carlo generation of x are illustrated in Fig.
6.6. The shape of the histograms agrees with the differential cross section illustrated in Fig. 6.3.

2. Generate t(= %) . The distribution in ¢ is obtained from Eq.(6.26) as

1-2z40_ 44z (1—1t)
t)dt = dt, 0<t<l1.
fl() 1+Cl/t2 > <t<

with form factors taken into account by

(0.35 A%27)?

Ci = .
T 1@ By fmy,
In the interval considered, the function f; (¢) will always be bounded from above by

max[ (1) = “1y

For small 2 and large E.,, fi(¢) approaches unity, as shown in Fig. 6.7.

The Monte Carlo generation is done using the rejection technique. About 70% of the generated numbers are
kept in this step. Generated ¢-distributions are shown in Fig. 6.9.
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Fig. 6.6: Histogram of generated x distributions for beryllium at three different photon energies. The total number
of entries at each energy is 10°.
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Fig. 6.7: The function f;(¢) at E, = 10 GeV in beryllium for different values of x .
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Fig. 6.8: The function f;(t) at £, = 1 TeV in beryllium for different values of x_, .
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Fig. 6.9: Histograms of generated ¢ distributions for £, = 10 GeV (solid line) and E, = 100 GeV (dashed line) with
108 events each.
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Fig. 6.10: Histograms of generated ¢ distributions for beryllium at four different photon energies.

. Generate v by the rejection technique using ¢ generated in the previous step for the frequency distribution

fa(y) = [1—2x+x_ +4xiz_t(1—1t)(1+cos(2¢))|, 0<vy <2r.
The maximum of f5(1)) is
max[fo(¥)] =1—-2x 2 [1—4t(1-1¢)].

Generated distributions in ¢ are shown in Fig. 6.10.

. Generate p. The distribution in p has the form

3
p”dp
dp = ) 0<p< max »
f3(p)dp e <p<p

where
1.9 1
2 _
Pmax A0'27 (t 1)7
and
2 272
o= 4 My e
VZizr— (\2Eyxya_t 183Z-1/3m,,

The p distribution is obtained by a direct transformation applied to uniform random numbers R; according to

p = [Calexp(BR) — 1)]'/*
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where

Cy + p.,
— 1 max .
B = log (02 )

Generated distributions of p are shown in Fig. 6.11

x 100

2000 prrrprrrrprrrr e
1800 E
1600 E
1400 E
1200F 3
10005 1Tev ]
800 E
600 _ E‘{= 10 GeV

creck
50.60.70.809 1
p

Fig. 6.11: Histograms of generated p distributions for beryllium at two different photon energies. The total number of
entries at each energy is 106.
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Fig. 6.12: Histograms of generated 6 distributions at different photon energies.

5. Calculate 6, 60_ and ¢ from ¢, p, ) with

E* 1
Y+ = H and u = ——1. (627)
my t
according to
1 1
9+:—(u+gcosw), 9_:—<ufgcosw> and @:Bsinw.
Y+ 2 Y- 2 U

The muon vectors can now be constructed from Eq.(6.23), where ¢ is chosen randomly between 0 and 27.
Fig. 6.12 shows distributions of 6 at different photon energies (in beryllium). The spectra peak around 1/ as
expected.

The most probable values are 6 ~ m,,/ E:[ = 1/74. In the small angle approximation used here, the values of
0 and 6_ can in principle be any positive value from 0 to co. In the simulation, this may lead (with a very small
probability, of the order of m,,/E.,) to unphysical events in which 6, or 6_ is greater than 7. To avoid this, a
limiting angle 6.,y = 7 is introduced, and the angular sampling repeated, whenever max (6, 0_) > Oeys.

Fig. 6.13, Fig. 6.14 and Fig. 6.15 show distributions of the simulated angular characteristics of muon pairs in com-
parison with results of exact calculations. The latter were obtained by means of numerical integration of the squared
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Fig. 6.13: Angular distribution of positive (or negative) muons. The solid curve represents the results of the exact

calculations. The histogram is the simulated distribution. The angular distribution for pairs created in the field of the
Coulomb centre (point-like target) is shown by the dashed curve for comparison.

LA

Fig. 6.14: Angular distribution in logarithmic scale. The curve corresponds to the exact calculations and the histogram
is the simulated distribution.
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Fig. 6.15: Distribution of the difference of transverse momenta of positive and negative muons (with logarithmic
x-scale).
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matrix elements with respective nuclear and atomic form factors. All these calculations were made for iron, with
E, =10GeV and x4 = 0.3. As seen from Fig. 6.13, wide angle pairs (at low values of the argument in the figure)
are suppressed in comparison with the Coulomb center approximation. This is due to the influence of the finite nu-
clear size which is comparable to the inverse mass of the muon. Typical angles of particle emission are of the order
of 1/y+ = my/ Eff (Fig. 6.14). Fig. 6.15 illustrates the influence of the momentum transferred to the target on the
angular characteristics of the produced pair. In the frame of the often used model which neglects target recoil, the pair
particles would be symmetric in transverse momenta, and coplanar with the initial photon.

6.7.5 Five-dimensional (5D) Bethe-Heitler gamma Conversion to p "y~

Since release 10.6, the G4BetheHeitlerSDModel physics model for y-ray conversions to e*e™ pairs (section Five-
dimensional (5D) Bethe-Heitler gamma Conversion to e+e-) has been extended to the conversions to p* ™ pairs,
sampling the 5D Bethe-Heitler differential cross section as described in the preceding section. For decays to muon
pairs, G4BetheHeitlerSDModel is a low-energy complement to the former G4GammaConversionToMuons model that
is using high-energy approximations, that has been verified above 10 GeV and that is described above (Section 6.7).
G4BetheHeitlerSDModel is expected to be valid down to threshold and the algorithm has been verified down to a
couple of hundred keV above threshold [Ber19]. Conversions of linearly polarised or non-polarised incident photons
can be generated. The energy threshold is

Ethreshold = 2(mi/M + m#)Cz,

where M is the target mass.
* For triplet conversion (y e~ — 7~ €7), Eireshold 18 close to 44 GeV.

* For nuclear conversion (Y Z — pu™p~ Z), Egreshold Tanges from 223 MeV for hydrogen targets down to almost
2m,,c® ~ 211 MeV for heavy nuclei.

Fig. 6.16 presents distributions of kinematic variables of interest for several incident-photon energies for «-ray nuclear
conversion on Argon:

* 0,+,~ X I, the pair opening angle multiplied by the incident-photon energy; the vertical line shows the most
probable value of the distribution, 3.2m,,c?, obtained by Olsen in the high-energy approximation [Ols63];

* logy (¢), where g is the (nucleus) recoil momentum;
* (recoil, azimutal angle of the (nucleus) recoil momentum (for a fully linearly polarized ~y-ray beam);
* E,+/E, the fraction of the incident-photon energy that is carried away by the positive muon

Note that G4BetheHeitlerSDModel does not take the finite size of the nucleus into account.
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Fig. 6.16: G4BetheHeitler5DModel: y-ray conversions to ;1 p~ pairs on Argon atoms (see text), for various incident-
photon energies (bullets 400 MeV, squares 1 GeV, upper triangle 4 GeV, down triangle 10 GeV).
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CHAPTER
SEVEN

7.1 Discrete Processes for Charged Particles

ENERGY LOSS OF CHARGED PARTICLES

Some processes for charged particles following the same interface G4VEmProcess as gamma processes described in
Introduction to Gamma Processes.

G4CoulombScattering;

G4eplusAnnihilation (with additional At Re st methods);
G4eplusPolarized Annihilation (with additional At Re st methods);
G4eeToHadrons;

G4NuclearStopping;

G4MicroElecElastic;

G4MicroEleclnelastic.

Corresponding model classes follow the G4VEmModel interface:

Some processes from do not follow described EM interfaces but provide

G4DummyModel (zero cross section, no secondaries);
G4eCoulombScatteringModel;
G4eSingleCoulombScatteringModel;
G4lonCoulombScatteringModel;
G4eeToTwoGammaModel;
G4eplusTo2GammaOKVIModel;
G4eeToHadronsModel,
G4PenelopeAnnihilationModel;
G4PolarizedAnnihilationModel;
G4ICRU49NuclearStoppingModel,
G4MicroElecElasticModel;
G4MicroFEleclnelasticModel.

G4VDiscreteProcess process:

G4 AnnihiToMuPair;

G4ScreenedNuclearRecoil;

direct

implementations of the basic
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¢ G4Cerenkov;
¢ G4Scintillation;

* G4SynchrotronRadiation;

7.2 Mean Energy Loss

Energy loss processes are very similar for e™/e™, u™ /™ and charged hadrons, so a common description for them
was a natural choice in GEANT4 [eal03], [eal09]. Any energy loss process must calculate the continuous and discrete
energy loss in a material. Below a given energy threshold the energy loss is continuous and above it the energy loss is
simulated by the explicit production of secondary particles - gammas, electrons, and positrons.

7.2.1 Method

Let

do(Z,E,T)
dT

be the differential cross-section per atom (atomic number Z) for the ejection of a secondary particle with kinetic
energy 1 by an incident particle of total energy £/ moving in a material of density p. The value of the kinetic energy
cut-off or production threshold is denoted by T.,,;. Below this threshold the soft secondaries ejected are simulated as
continuous energy loss by the incident particle, and above it they are explicitly generated. The mean rate of energy
loss is given by:

Teut
AEsost(E, Tew) _ / (2B T) o 1.1
0

dx dT

where ng; is the number of atoms per volume in the material. The total cross section per atom for the ejection of a
secondary of energy T > Tr,+ i

Trmaz
o(Z, B, Tout) = / (2, ET) (7.2)

Tous dr

where 7,4, 1s the maximum energy transferable to the secondary particle.

If there are several processes providing energy loss for a given particle, then the total continuous part of the energy
loss is the sum:

dEzgl}t(E7 TCUt) _ Z dEsoft,i (E, Tcut)

dz dz ' (7.3)

%

These values are pre-calculated during the initialization phase of GEANT4 and stored in the dF /dx table. Using this
table the ranges of the particle in given materials are calculated and stored in the Range table. The Range table is
then inverted to provide the InverseRange table. At run time, values of the particle’s continuous energy loss and range
are obtained using these tables. Concrete processes contributing to the energy loss are not involved in the calculation
at that moment. In contrast, the production of secondaries with kinetic energies above the production threshold is
sampled by each concrete energy loss process.

The default energy interval for these tables extends from 100 eV to 100 TeV and the default number of bins is 84. For
muons and for heavy particles energy loss processes models are valid for higher energies and can be extended. For
muons the upper limit may be set to 1000 PeV.
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7.2.2 General Interfaces

There are a number of similar functions for discrete electromagnetic processes and for electromagnetic (EM) packages
an additional base classes were designed to provide common computations [eal09]. Common calculations for discrete
EM processes are performed in the class G4VEnergyLossProcess. Derived classes (Table 7.1) are concrete processes
providing initialisation. The physics models are implemented using the G4VEmMaodel interface. Each process may
have one or many models defined to be active over a given energy range and set of G4Regions. Models are imple-
menting computation of energy loss, cross section and sampling of final state. The list of EM processes and models
for gamma incident is shown in Table 7.1.

Table 7.1: List of process and model classes for charged particles.

EM process EM model Ref.
G4elonisation G4MollerBhabhaModel Section 10.1
G4LivermorelonisationModel Section 10.1.6
G4PenelopelonisationModel Section 10.1.5
G4PAIModel Section 7.6
G4PAIPhotModel Section 7.6
G4ePolarizedIonisation G4PolarizedMollerBhabhaModel Section 13.2
G4Mulonisation G4MuBetheBlochModel Section 11.1
G4PAIModel Section 7.6
G4PATPhotModel Section 7.6
G4hlonisation G4BetheBlochModel Section 12.1
G4BraggModel Section 12.1
G4ICRU73QOModel Section 12.2.1
G4PAIModel Section 7.6
G4PAIPhotModel Section 7.6
G4ionlonisation G4BetheBlochModel Section 12.1
G4BetheBlochlonGasModel Section 12.1
G4BragglonModel Section 12.1
G4BragglonGasModel Section 12.1
G4lonParametrisedLossModel Section 12.2.4
G4AtimaEnergyLossModel Section 7.7
G4LindhardSorensenlonModel
G4NuclearStopping G4ICRU49NuclearStoppingModel | Section 12.1.3
G4mpllonisation G4mpllonisationWithDeltaModel
G4eBremsstrahlung G4SeltzerBergerModel Section 10.2.1
G4eBremsstrahlungRelModel Section 10.2.2
G4LivermoreBremsstrahlungModel | Section 10.2.4
G4PenelopeBremsstrahlungModel | Section 10.2.3
G4ePolarizedBremsstrahlung | G4PolarizedBremsstrahlungModel | Section 13.5
G4MuBremsstrahlung G4MuBremsstrahlungModel Section 11.2
G4hBremsstrahlung G4hBremsstrahlungModel Section 11.2
G4ePairProduction G4MuPairProductionModel Section 11.3
G4MuPairProduction G4MuPairProductionModel Section 11.3
G4hPairProduction G4hPairProductionModel Section 11.3

7.2. Mean Energy Loss
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7.2.3 Step-size Limit

Continuous energy loss imposes a limit on the step-size because of the energy dependence of the cross sections. It is
generally assumed in MC programs (for example, Geant3) that the cross sections are approximately constant along
a step, i.e. the step size should be small enough, so that the change in cross section along the step is also small.
In principle one must use very small steps in order to insure an accurate simulation, however the computing time
increases as the step-size decreases.

For EM processes the exact solution is available (see Correcting the Cross Section for Energy Variation) but is is not
implemented yet for all physics processes including hadronics. A good compromise is to limit the step-size by not
allowing the stopping range of the particle to decrease by more than ~20% during the step. This condition works well
for particles with kinetic energies >1 MeV, but for lower energies it gives too short step-sizes, so must be relaxed. To
solve this problem a lower limit on the step-size was introduced. A smooth StepFunction, with 2 parameters, controls
the step size. At high energy the maximum step size is defined by Step/Range ~ ar (parameter dRoverRange). By
default o = 0.2. As the particle travels the maximum step size decreases gradually until the range becomes lower
than pr (parameter finalRange). Default finalRange pr = 1 mm. For the case of a particle range R > ppg the
StepFunction provides limit for the step size ASj;,,, by the following formula:
ASpim = arR - _ PR
im = arR+ pr(l —ap) (2- 2. 74
In the opposite case of a small range ASj;,, = R. The figure below shows the ratio step/range as a function of range
if step limitation is determined only by the expression (7.4).

dRoverRange

finalRange

range
Fig. 7.1: Step limit.

The parameters of StepFunction can be overwritten using a Ul command:

/process/eLoss/StepFunction 0.2 1 mm

To provide more accurate simulation of particle ranges in physics constructors G4EmStandardPhysics_option3 and
G4EmStandardPhysics_option4 more strict step limitation is chosen for different particle types.
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7.2.4 Run Time Energy Loss Computation

The computation of the mean energy loss after a given step is done by using the dF/dx, Range, and InverseRange
tables. The dE/dx table is used if the energy deposition (AT) is less than allowed limit AT < &£Tp, where £ is
linear Loss Limit parameter (by default £ = 0.01), T} is the kinetic energy of the particle. In that case

AT = @As,
dx

where AT is the energy loss, As is the true step length. When a larger percentage of energy is lost, the mean loss can
be written as

AT = TO - fT(TO — AS)

where 7( the range at the beginning of the step, the function fr(r) is the inverse of the Range table (i.e. it gives the
kinetic energy of the particle for a range value of r. By default spline approximation is used to retrieve a value from
dE/dx, Range, and InverseRange tables. The spline flag can be changed using an UI command:

’/process/em/spline false

After the mean energy loss has been calculated, the process computes the actual energy loss, i.e. the loss with
fluctuations. The fluctuation models are described in Energy Loss Fluctuations.

If deexcitation module (see Aromic relaxation) is enabled then simulation of atomic deexcitation is performed using
information on step length and ionisation cross section. Fluorescence gamma and Auger electrons are produced above
the same threshold energy as d-electrons and bremsstrahlung gammas. The following Ul commands can be used to
enable atomic relaxation:

/process/em/deexcitation myregion true true true
/process/em/fluo true

/process/em/auger true

/process/em/pixe true
/process/em/deexcitationIgnoreCut true

The last command means that production threshold for electrons and gammas are not checked, so full atomic de-
excitation decay chain is simulated.

After the step a kinetic energy of a charged particle is compared with the lowestEnergy. In the case if final kinetic
energy is below the particle is stopped and remaining kinetic energy is assigned to the local energy deposit. The default
value of the limit is 1 keV. It may be changed separately for electron/positron and muon/hadron using UI commands:

/process/em/lowestElectronEnergy 100 eV
/process/em/lowestMuHadEnergy 50 eV

These values may be set to zero.

7.2.5 Energy Loss by Heavy Charged Particles

To save memory in the case of positively charged hadrons and ions energy loss, dE/dx, Range and InverseRange
tables are constructed only for proton, antiproton, muons, pions, kaons, and Generic Ion. The energy loss for other
particles is computed from these tables at the scaled kinetic energy Tscqied:

Mbase

Tscaled = Tia 7.5
Mparticle ( )

where T is the kinetic energy of the particle, Myqse and M,q,¢c1c are the masses of the base particle (proton or kaon)
and particle. For positively changed hadrons with non-zero spin profon is used as a based particle, for negatively
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charged hadrons with non-zero spin - antiproton, for charged particles with zero spin - K or K~ correspondingly.
The virtual particle Generic Ion is used as a base particle for for all ions with Z > 2. It has mass, change and other
quantum numbers of the profon. The energy loss can be defined via scaling relation:

dE dE
E(T) = qgff(Fl(T)i (Tscatea) + (T, gegr))s

dx base
where g.ry is particle effective change in units of positron charge, I and F; are correction function taking into
account Birks effect, Block correction, low-energy corrections based on data from evaluated data bases [eal05]. For
a hadron ¢, is equal to the hadron charge, for a slow ion effective charge is different from the charge of the ion’s
nucleus, because of electron exchange between transporting ion and the media. The effective charge approach is used
to describe this effect [ZM88]. The scaling relation (7.5) is valid for any combination of two heavy charged particles
with accuracy corresponding to high order mass, charge and spin corrections [eal93].

7.3 Energy Loss Fluctuations

The total continuous energy loss of charged particles is a stochastic quantity with a distribution described in terms of
a straggling function. The straggling is partially taken into account in the simulation of energy loss by the production
of d-electrons with energy T' > Te,; ((7.2)). However, continuous energy loss ((7.1)) also has fluctuations. Hence in
the current GEANT4 implementation different models of fluctuations implementing the G4V Em FluctuationM odel
interface:

¢ G4UniversalFluctuation;
¢ G4BohrFluctuations;

¢ G4lonFluctuations;

G4 AtimaFluctuations;
G4PAIModel;
¢ G4PAIPhotModel.

The first model is the default one used in main Physics List and will be described below. Other models have limited
applicability and will be described in chapters for Hadron and Ion lonisation, PAI (Photoabsorption lonisation Model)
and ATIMA (ATIMA energy-loss model) models.

7.3.1 Fluctuations in Thick Absorbers

The total continuous energy loss of charged particles is a stochastic quantity with a distribution described in terms of a
straggling function. The straggling is partially taken into account in the simulation of energy loss by the production of
d-electrons with energy T' > T,.. However, continuous energy loss also has fluctuations. Hence in the current GEANT4
implementation two different models of fluctuations are applied depending on the value of the parameter « which is
the lower limit of the number of interactions of the particle in a step. The default value chosen is x = 10. In the case
of a high range cut (i.e. energy loss without delta ray production) for thick absorbers the following condition should
be fulfilled:

AFE > Kk Thas

where A F is the mean continuous energy loss in a track segment of length s, and 7, is the maximum kinetic energy
that can be transferred to the atomic electron. If this condition holds the fluctuation of the total (unrestricted) energy
loss follows a Gaussian distribution. It is worth noting that this condition can be true only for heavy particles, because
for electrons, T),q. = T'/2, and for positrons, T, = T, where T is the kinetic energy of the particle. In order to
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simulate the fluctuation of the continuous (restricted) energy loss, the condition should be modified. After a study, the
following conditions have been chosen:

AE > kT, (7.6)

Tnaz <2710 (1.1

where T is the cut kinetic energy of §-electrons. For thick absorbers the straggling function approaches the Gaussian
distribution with Bohr’s variance [eal93]:

Z2 2
02 = 27rr3meczNelﬂ—;”Tcs (1 — i) , (7.8)

where 7. is the classical electron radius, N; is the electron density of the medium, Z;, is the charge of the incident
particle in units of positron charge, and £ is the relativistic velocity.

7.3.2 Fluctuations in Thin Absorbers

If the conditions (7.6) and (7.7) are not satisfied the model of energy fluctuations in thin absorbers is applied. The
formulas used to compute the energy loss fluctuation (straggling) are based on a very simple physics model of the
atom. It is assumed that the atoms have only two energy levels with binding energies F; and E5. The particle-atom
interaction can be an excitation with energy loss F; or Fs, or ionisation with energy loss distributed according to a
function g(E) ~ 1/E? :

T,
r BTy, 1
B)dE =1=> g(B) = —"_ —_ 7.9
/E0 9(E) 9B = o B 79)

The macroscopic cross section for excitation (i = 1, 2) is

fi m[2me? (8y)*/Ei] — B

¥, =C 1-— 7.10
B, Tpme (27— g2 ") (710
and the ionisation cross section is
Twn — Eo
Sy =C—Ft—p—r (7.11)
EOTup hl(EiO)

where F denotes the ionisation energy of the atom, I is the mean ionisation energy, T, is the production threshold
for delta ray production (or the maximum energy transfer if this value smaller than the production threshold), E; and
fi are the energy levels and corresponding oscillator strengths of the atom, and C' and r are model parameters.

The oscillator strengths f; and energy levels E; should satisfy the constraints
fi+tfo=1 (7.12)

firlnE; 4+ fornEs =1nl. (7.13)

The cross section formulas (7.10),(7.11) and the sum rule equations (7.12),(7.13) can be found e.g.in Ref.[Bic88]. The
model parameter C' can be defined in the following way. The numbers of collisions (n;, ¢ = 1,2 for excitation and
3 for ionisation) follow the Poisson distribution with a mean value (n;). In a step of length Az the mean number of
collisions is given by

<n1> = Az Ei

The mean energy loss in a step is the sum of the excitation and ionisation contributions and can be written as

dE T
dr Eo
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From this, using Eq. (7.10) - (7.13), one can see that
C =dE/dzx.

The other parameters in the fluctuation model have been chosen in the following way. Z- f; and Z- f5 represent in the
model the number of loosely/tightly bound electrons

fo=0forZ =1

fo=2/ZforZ > 2
E, =10eV Z?
Ey=10eV.

Using these parameter values, Fo corresponds approximately to the K-shell energy of the atoms (and Z fo = 2 is the
number of K-shell electrons). The parameters f; and F; can be obtained from Eqs.(7.12) and (7.13). The parameter r
is the only variable in the model which can be tuned. This parameter determines the relative contribution of ionisation
and excitation to the energy loss. Based on comparisons of simulated energy loss distributions to experimental data,
its value has been fixed as

r = 0.55.

7.3.3 Width Correction Algorithm

This simple parametrization and sampling in the model give good values for the most probable energy loss in thin
layers. The width of the energy loss distribution (Full Width at Half Maximum, FWHM) in most of the cases is too
small. In order to get good FWHM values a relatively simple width correction algorithm has been applied. This
algorithm rescales the energy levels E1, Es and the number of excitations n1, no in such a way that the mean energy
loss remains the same. Using this width correction scheme the model gives not only good most probable energy loss,
but good FWHM value too.

Width correction algorithm is in the model since version 9.2. The updated version in the model (in version 9.4)
causes an important change in the behaviour of the model: the results become much more stable, i.e. the results do
not change practically when the cuts and/or the stepsizes are changing. Another important change: the (unphysical)
second peak or shoulder in the energy loss distribution which can be seen in some cases (energy loss in thin gas layers)
in older versions of the model disappeared. Limit of validity of the model for thin targets: the model gives good
(reliable) energy loss distribution if the mean energy loss in the target is > (few times) * I.,c, where I, is the
mean excitation energy of the target material.

This simple model of energy loss fluctuations is rather fast and can be used for any thickness of material. This has
been verified by performing many simulations and comparing the results with experimental data, such as those in Ref.
[LPUrban95]. As the limit of validity of Landau’s theory is approached, the loss distribution approaches the Landau
form smoothly.

7.3.4 Sampling of Energy Loss

If the mean energy loss and step are in the range of validity of the Gaussian approximation of the fluctuation (7.6)
and (7.7), the Gaussian sampling is used to compute the actual energy loss (7.8). For smaller steps the energy loss is
computed in the model under the assumption that the step length (or relative energy loss) is small and, in consequence,
the cross section can be considered constant along the step. The loss due to the excitation is

AEEZL’C = nlEl + n2E2
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where n; and ny are sampled from a Poisson distribution. The energy loss due to ionisation can be generated from the
distribution g(E) by the inverse transformation method:

B
u=F(F)= / g(x)dx
Eq
Eqo
Tup—Fo
Tup

E=F"(u) =
1—u

where  is a uniformly distributed random number € [0, 1]. The contribution coming from the ionisation will then be

n3

Z Ey
AEion = 1 Tup_EO
j=1+ Ui

where ng is the number of ionisations sampled from the Poisson distribution. The total energy loss in a step will be
AFE = AFE.;. + AFE;,, and the energy loss fluctuation comes from fluctuations in the number of collisions n; and
from the sampling of the ionisation loss.

7.4 Correcting the Cross Section for Energy Variation

As described in Mean Energy Loss and Determination of the Interaction Point the step size limitation is provided by
energy loss processes in order to insure the precise calculation of the probability of particle interaction. It is generally
assumed in Monte Carlo programs that the particle cross sections are approximately constant during a step, hence the
reaction probability p at the end of the step can be expressed as

p=1—exp(—nso(E;)),

where n is the density of atoms in the medium, s is the step length, E; is the energy of the incident particle at the
beginning of the step, and o (E;) is the reaction cross section at the beginning of the step.

However, it is possible to sample the reaction probability from the exact expression

Ey
p=1—exp (—/ na(E)ds) ,
E;

where E is the energy of the incident particle at the end of the step, by using the integral approach to particle transport.
This approach is available for processes implemented via the G4VEnergyLossProcess and G4VEmProcess interfaces.

The Monte Carlo method of integration is used for sampling the reaction probability [eal92]. It is assumed that during
the step the reaction cross section smaller, than some value o(E) < o,,. The mean free path for the given step is
computed using o,,,. If the process is chosen as the process happens at the step, the sampling of the final state is
performed only with the probability p = o(Ey)/on, alternatively no interaction happen and tracking of the particle
is continued. To estimate the maximum value o,,, for the given tracking step at GEANT4 initialisation the energy E,,
of absolute maximum o,,,, of the cross section for given material is determined and stored. If at the tracking time
particle energy F < E,,, then o,, = o(E). For higher initial energies if £ > E,, then o,,, = max(c(E),c(¢E)),
in the opposite case, 0, = Tmqz. Here € is a parameter of the algorithm. Its optimal value is connected with the value
of the dRoverRange parameter (see Mean Energy Loss), by default £ = 1 — ag = 0.8. Note, that described method is
precise if the cross section has only one maximum, which is a typical case for electromagnetic processes.

The integral variant of step limitation is the default for the G4elonisation, G4hlonisation, G4eBremsstrahlung and
some other processes for charged particles. To enable/disable this option the Boolean Ul command can be used:

/process/eLoss/integral true/false

The integral variant of the energy loss sampling process is less dependent on values of the production cuts [eal09] and
allows to have less step limitation, however it should be applied on a case-by-case basis because may require extra
CPU.
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7.5 Conversion from Cut in Range to Energy Threshold

In GEANT4 charged particles are tracked to the end of their range. The differential cross section of d-electron pro-
ductions and bremsstrahlung grow rapidly when secondary energy decrease. If all secondary particles will be tracked
the CPU performance of any Monte Carlo code will be poor. The traditional solution is to use cuts. The specific of
GEANT4 [eal(03] is that user provides value of cut in term of cut in range, which is unique for defined G4Region or for
the complete geometry [eal 16].

Range is used, rather than energy, as a more natural concept for designing a coherent policy for different particles
and materials. Definition of the certain value of the cut in range means the requirement for precision of spatial
radioactive dose deposition. This conception is more strict for a simulation code and provides fewer handles for user
to modify final results. At the same time, it ensures that simulation validated in one geometry is valid also for the other
geometries.

The value of cut is defined for electrons, positrons, gamma and protons. At the beginning of initialization of GEANT4
physics the conversion is performed from unique cut in range to cuts (production thresholds) in kinetic energy for
each G4MaterialCutsCouple [eal16]. At that moment no energy loss or range table is created, so computation should
be performed using original formulas. For electrons and positrons ionisation above 10 keV a simplified Berger-
Seltzer energy loss formula ((10.2)) is used, in which the density correction term is omitted. The contribution of the
bremsstrahlung is added using empirical parameterized formula. For 7" < 10 keV the linear dependence of ionisation
losses on electron velocity is assumed, bremsstrahlung contribution is neglected. The stopping range is defined as

T
R(T):/O T

The integration has been done analytically for the low energy part and numerically above an energy limit 1 keV. For
each cut in range the corresponding kinetic energy can be found out. If obtained production threshold in kinetic energy
cannot be below the parameter lowlimit (default 1 keV) and above highlimit (default 10 GeV). If in specific application
lower threshold is required, then the allowed energy cut needs to be extended:

G4ProductionCutsTable: :GetProductionCutsTable () —>SetEnergyRange (lowlimit, highlimit);

or via Ul commands:

/cuts/setMinCutEnergy 100 eV
/cuts/setMaxCutEnergy 100 TeV

In contrary to electrons, gammas have no range, so some approximation should be used for range to energy conversion.
An approximate empirical formula is used to compute the absorption cross section of a photon in an element o,s.
Here, the absorption cross section means the sum of the cross sections of the gamma conversion, Compton scattering
and photoelectric effect. These processes are the “destructive” processes for photons: they destroy the photon or
decrease its energy. The coherent or Rayleigh scattering changes the direction of the gamma only; its cross section is
not included in the absorption cross section. The AbsorptionLength L, vector is calculated for every material as

Labs - 5/Jabs~

The factor 5 comes from the requirement that the probability of having no ‘destructive’ interaction should be small,
hence

exp(—LapsOaps) = exp(—5) = 6.7 x 1073,

The photon cross section for a material has a minimum at a certain energy F,,;,. Correspondingly L,;s has a max-
imum at £ = F,,;,, the value of the maximal L, is the biggest “meaningful” cut in absorption length. If the cut
given by the user is bigger than this maximum, a warning is printed and the cut in kinetic energy is set to the highlimit.

The cut for proton is introduced with GEANT4 v9.3. The main goal of this cut is to limit production of all recoil
ions including protons in elastic scattering processes. A simple linear conversion formula is used to compute energy
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threshold from the value of cut in range, in particular, the cut in range 1 mm corresponds to the production threshold
100 keV.

The conversion from range to energy can be studied using G4EmCalculator class. This class allows access or recal-
culation of energy loss, ranges and other values. It can be instantiated and at any place of user code and can be used
after initialisation of Physics Lists:

G4EmCalculator calc;
calc.ComputeEnergyCutFromRangeCut (range, particle, material);

here particle and material may be string names or corresponding const pointers to G4ParticleDefinition and
G4Material.

7.6 Photoabsorption lonisation Model

7.6.1 Cross Section for lonising Collisions

The Photoabsorption Ionisation (PAI) model describes the ionisation energy loss of a relativistic charged particle in
matter. For such a particle, the differential cross section do; /dw for ionising collisions with energy transfer w can be
expressed most generally by the following equations [VSVAael82]:

do;  2nZe! { f(w) [ 2mu? e1 — f? |5|2

= 1 _
2 nw|1—52€| €2

1— 2 _*
= arg(l — 5%€")

+ F(‘;) } : (7.14)
w

w le(w)|”

where

[
Pl | )P ™

mwes(w)
W)= ——-.
f(@) 2m2Z NR?
Here m and e are the electron mass and charge, /i is Planck’s constant, § = v/c is the ratio of the particle’s velocity v
to the speed of light ¢, Z is the effective atomic number, N is the number of atoms (or molecules) per unit volume, and
€ = €1 + i€9 is the complex dielectric constant of the medium. In an isotropic non-magnetic medium the dielectric
constant can be expressed in terms of a complex index of refraction, n(w) = ny + ing, e(w) = n?(w). In the energy
range above the first ionisation potential /; for all cases of practical interest, and in particular for all gases, n; ~ 1.
Therefore the imaginary part of the dielectric constant can be expressed in terms of the photoabsorption cross section
oy (w):
Nhe
g2(w) = 2n1ng ~ 2ng = —o4(w).
w

The real part of the dielectric constant is calculated in turn from the dispersion relation

2Nh e !
e1(w)—1= - CV.p./O de/,

w/2 _ OJ2

where the integral of the pole expression is considered in terms of the principal value. In practice it is convenient to
calculate the contribution from the continuous part of the spectrum only. In this case the normalized photoabsorption
cross section

2 2h 2Z Wmazx -1

Gy (w) = L07((,‘1) [/ av(w')dw’} s Wnaz ~ 100 keV
mc I

is used, which satisfies the quantum mechanical sum rule [FUJW68]:

Wmaz 2 2h 2Z
/ G (w)dw = 222
I mc
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The differential cross section for ionising collisions is expressed by the photoabsorption cross section in the continuous
spectrum region:

arg(1 — f%*)

do; a { Gy (w) [ln 2mu? e1— B2 e

dw — B2 w|5(w)\2 w1 — B2%] - €2
where
Nhe
62(0)) = w O."/(w)a
2Nhe Wmaez G (W),

For practical calculations using Eq.(7.14) it is convenient to represent the photoabsorption cross section as a polyno-
mial in w~! as was proposed in [BFR90]:

k=1

where the coefficients, a,(;) result from a separate least-squares fit to experimental data in each energy interval . As
a rule the interval borders are equal to the corresponding photoabsorption edges. The dielectric constant can now be
calculated analytically with elementary functions for all w, except near the photoabsorption edges where there are
breaks in the photoabsorption cross section and the integral for the real part is not defined in the sense of the principal
value. The third term in Eq.(7.14), which can only be integrated numerically, results in a complex calculation of
do;/dw. However, this term is dominant for energy transfers w > 10 keV, where the function |(w)|® ~ 1. This
is clear from physical reasons, because the third term represents the Rutherford cross section on atomic electrons
which can be considered as quasifree for a given energy transfer [AWWMIJ80]. In addition, for high energy transfers,
e(w) =1 —w?/w? ~ 1, where wy, is the plasma energy of the material. Therefore the factor |(w)| ~2 can be removed
from under the integral and the differential cross section of ionising collisions can be expressed as:

1 “
+t3 /11 ov(w’)dw’} .

dw 7B |e(w)|”

1 o 1— 2 %
w nw|1—[32€| €2 arg(l — 5¢7)

do; a {&W(w) [ 2mu? g1 — B2 el?

This is especially simple in gases when |e(w)| > ~ 1 for all w > I; [AWWMIS0].

7.6.2 Energy Loss Simulation

For a given track length the number of ionising collisions is simulated by a Poisson distribution whose mean is pro-
portional to the total cross section of ionising collisions:

Wmax d /
05 = / o )dw’.
I dw’

1

The energy transfer in each collision is simulated according to a distribution proportional to

Wmaz /
oi(>w) = / do(w )dw’.

dw’

The sum of the energy transfers is equal to the energy loss. PAI ionisation is implemented according to the model
approach (class G4PAIModel) allowing a user to select specific models in different regions. Here is an example
physics list:
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const G4RegionStorex theRegionStore = G4RegionStore::GetInstance();
G4Region* gas = theRegionStore->GetRegion ("VertexDetector");

if (particleName == "e-")

{
G4eIonisation* eion = new G4elIonisation();
G4PAIModel~* pai = new G4PAIModel (particle, "PAIModel");

[

// here 0 is the highest priority in region
eion->AddEmModel (0, pai, pai,gas);

gas'

It shows how to select the G4PAIModel to be the preferred ionisation model for electrons in a G4Region named
VertexDetector. The first argument in AddEmModel is 0 which means highest priority.

The class G4PAIPhotonModel generates both §-electrons and photons as secondaries and can be used for more detailed
descriptions of ionisation space distribution around the particle trajectory.

7.6.3 Photoabsorption Cross Section at Low Energies

The photoabsorption cross section, o~ (w), where w is the photon energy, is used in GEANT4 for the description of the
photo-electric effect, X-ray transportation and ionisation effects in very thin absorbers. As mentioned in the discussion
of photoabsorption ionisation (see Photoabsorption lonisation Model), it is convenient to represent the cross section
as a polynomial in w1 [BFR90] :

k=1

Using cross sections from the original Sandia data tables, calculations of primary ionisation and energy loss distribu-
tions produced by relativistic charged particles in gaseous detectors show clear disagreement with experimental data,
especially for gas mixtures which include xenon. Therefore a special investigation was performed [VMAPeal94] by
fitting the coefficients ag) to modern data from synchrotron radiation experiments in the energy range of 10-50 eV.
The fits were performed for elements typically used in detector gas mixtures: hydrogen, fluorine, carbon, nitrogen and
oxygen. Parameters for these elements were extracted from data on molecular gases such as N,, O,, CO,, CHy4, and

CF, [eal73][eal77]. Parameters for the noble gases were found using data given in the tables [MW76][WMS80].

7.7 ATIMA energy-loss model

ATIMA (ATomic Interaction with MAtter) classes, G4AtimaEnergyLossModel and G4AtimaFluctuations, imple-
mented in GEANT4 since version 10.5 predicts the energy loss and energy-loss straggling of ions penetrating mat-
ter for kinetic energies ranging from 1 keV/u to 450 GeV/u. The model is developed at GSI Helmholtz Center for
Heavy Ion Research GmbH since 1994. In the last two decades the model has been widely validated for ions using
experimental data obtained from experiments carried out at the fragment separator FRS [GS98][SG98]. Basically, the
model is based on the Bethe formula but including corrections from the theory developed by Lindhard and Soerensen
[LS96], which make this model a powerful tool to predict the energy loss and energy-loss straggling of medium and
heavy ions accelerated at relativistic energies [eal94][eal96][eal00][eal02]. This section is devoted to explain the main
ingredients and equations of ATIMA model in GEANT4.
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7.7.1 Continuous energy loss

Above kinetic energies of 30 MeV/u, the stopping power is obtained from the theory developed by Lindhard and
Soerensen (LS) [LS96] including the following corrections: the shell effects [BB64], a Barkas term [JM72][Lin76]
and the Fermi-density effect [SP71a]. Nuclear size effect of projectiles, which are important for ions moving at high
relativistic velocities, comes also from the LS theory. The mean charge of the projectiles is parametrized according
to ref. [PB68]. For ions with medium and high atomic numbers the LS theory differs substantially from the Bethe
formula because the later is based on the first-order Born approximation, while the LS theory is the exact solution for
two-body free electron [LS96][eal94][eal96]. In addition, energy transfer in elastic collisions with the whole target
atom is also included.

In ATIMA the continuous energy loss per unit of path length is calculated according to

IE_(9E) (42 (7.15)
dx B dx in aX elastic .

where the inelastic (in) contribution is calculated as follows

E 2Z 2 20122.2
(d ) — 2mr2mePng 47 T({ln( me by )—62—20}B+LS—5/2>
n T

dx Ar3? 12
being

1. = classical electron radius = e?/(4regmc?)
mc? = mass-energy of the electron
ne; = electron density in the material
I = mean excitation energy of the material
Z7 = atomic number of the material
< g > = average charge of the hadron or ion in units of the electron charge
v = E/mc?
B2 =1-(1/7%)
C = Shell correction function
B = Barkas term
LS = LS term including nuclear size effects for ions at relativistic velocities

& = density effect function

The LS term accounts for nuclear size and scattering corrections to the Bethe formula [eal94]. The values of LS are
interpolated between pre-calculated tables obtained by an analysis of partial waves each contributing with different
phase shift [LS96]. These partial waves were calculated with a model developed by Soerensen and they were then
summed up for the tables used in ATIMA.

The shell correction term C accounts for the fact that at projectile velocities comparable or even smaller than the
orbital velocities of the bound target electrons the energy transfer is less effective. This correction is considered only
at low energies v3 < 0.13 and is expressed in the form

C =107°[(422.377n2 + 30.40431~* — 0.38106n%)I* + (3.8580191~2 — 0.1667989n 4
+0.00157955n )17

where n = 0.

The Barkas correction term B accounts for close and distant collisions and is introduced as a polarisation effect. This
term is parameterized in the form

B=1+2<q>

_9
V (Zr)®
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where 6 is calculated according to ref. [JM72], ® is defined as

7262
ZTOé

and < ¢ > represents the average charge of the projectile, which is determined according to the parameterization given
by Pierce and Blann [PB68]:

=_B
< q>=Zp(1 - 70%a7p)) (7.16)
The density correction ¢ is described according to the formulation given by Sternheimer [SP71].

Below 10 MeV/u ATIMA uses an older version of Ziegler’s SRIM code [JFZL85], in which the continuous energy
loss per unit of path length is calculated according to

dE
<d$> n N Se(,)/lZP)Q

where Se represents the stopping power per unit of path length of a proton passing through the same material. The
effective charge v, is parameterized as
20vr |
()
Qoo

where vy is the Bohr velocity, ag is the Bohr radius and v is the target Fermi velocity that depends on Z7. Here ¢; is
defined according to

2
v
Y1 =q1+ 0.5(1 — q1) (UE") In (&

q1 =1 — exp(0.803y°3 — 1.3167y°5 — 0.38157y, — 0.008983y2)

where y,. is a function of the projectile velocity v

or

0.75vF ( 202 vt )
Yr =~ - —
UoZIQD/S v 150%

if the projectile velocity is lower than the target Fermi velocity.

A is the screening length defined as
_ 2a0(1—q)??
- 0-q)/7)

and (' is expressed in the form

1
Ci=1+ 77 (0.18 +0.0015Z7) exp (—15.2 + 2In(Ep))
P

where Ep is the projectile kinetic energy in units of keV/u.
In the intermediate energy range 10 < Ep < 30MeV/u ATIMA interpolates between the two parameterizations.
Finally, the elastic contribution in eq. (7.15) is obtained according to

(dE) _ 846.21 - 10723ZPZTAPA7JX
du elastic ATAsumZpow

where Zp is the atomic number of the projectile, Agym = Ar + Ap, Zpow = Z%‘zg + 2%23 and

X = l'”z(:) : for €>30

Y= 0.5 In(1+1.01323¢) . for € < 30

€+0.01321¢0-21226 1-0.19593¢0-5
where € is defined as: € = 32530ArApEp /(Z1 Zp Asum Zpow) With Ep in units of keV/u.
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7.7.2 Fluctuations of energy loss

ATIMA also accounts for the determination of fluctuations of the energy lost by ions penetrating matter. Here, the
energy-loss straggling comes also from the Lindhard and Soerensen theory [eal96]. The variance is defined a
2 2,22 2 Zr
QF =4ArNomecroyx < q >° —
2 AT
where x is a correction obtained from the Lindhard and Soerensen theory [LS96][eal96] and < g > is calculated
according to eq. (7.16).

84 Chapter 7. Energy Loss of Charged Particles



CHAPTER
EIGHT

ELASTIC SCATTERING

8.1 Multiple Scattering

Elastic scattering of electrons and other charged particles is an important component of any transport code. Elastic
cross section is huge when particle energy decreases, so multiple scattering (MSC) approach should be introduced in
order to have acceptable CPU performance of the simulation. A universal interface G4VMultipleScattering is used by
all GEANT4 MSC processes [eal09][VNIU10]:

e G4eMultipleScattering;
e G4hMultipleScattering;
* G4MuMultipleScattering.

For concrete simulation the G4VMscModel interface is used, which is an extension of the base G4VEmModel interface.
The following models are available:

* G4UrbanMscModel - it is applicable to all types of particles and is the default model for electrons and positrons
below 100 MeV [eall7];

* G4GoudsmitSaundersonModel - for electrons and positrons [OKTO09], this model was recently rewritten [eal 1 7]
and provides the best accuracy of electron transport below 100 MeV [SIN18];

* G4WentzelVIModel - is the default model for all changed particles [VNIU10][eal16][eal17] including electrons
and positrons above 100 MeV, it is included in Physics List together with G4CoulombScattering process, which
is responsible for large angle scattering;

* G4LowEWentzelVIModel - for all particles with low-energy limit 10 eV - is a less accurate variant of the above
mode.

The discussion on GEANT4 MSC models is available in Ref. [VNIU10]. Below we will describe models developed by
L. Urban [Urb06], because these models are used in many GEANT4 applications and have general components reused
by other models.

8.1.1 Introduction

MSC simulation algorithms can be classified as either detailed or condensed. In the detailed algorithms, all the
collisions/interactions experienced by the particle are simulated. This simulation can be considered as exact, it gives
the same results as the solution of the transport equation. However, it can be used only if the number of collisions is
not too large, a condition fulfilled only for special geometries (such as thin foils, or low density gas). In solid or liquid
media the average number of collisions is very large and the detailed simulation becomes very inefficient. High energy
simulation codes use condensed simulation algorithms, in which the global effects of the collisions are simulated at
the end of a track segment. The global effects generally computed in these codes are the net energy loss, displacement,
and change of direction of the charged particle. The last two quantities are computed from MSC theories used in the
codes and the accuracy of the condensed simulations is limited by accuracy of MSC approximation.
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Most particle physics simulation codes use the multiple scattering theories of Moliere [Moliere48], Goudsmit and
Saunderson [GS40] and Lewis [Lew50]. The theories of Moliere and Goudsmit-Saunderson give only the angular
distribution after a step, while the Lewis theory computes the moments of the spatial distribution as well. None of
these MSC theories gives the probability distribution of the spatial displacement. Each of the MSC simulation codes
incorporates its own algorithm to determine the angular deflection, true path length correction, and spatial displacement
of the charged particle after a given step. These algorithms are not exact, of course, and are responsible for most of the
uncertainties of the transport codes. Also due to inaccuracy of MSC the simulation results can depend on the value of
the step length and generally user has to select the value of the step length carefully.

A new class of MSC simulation, the mixed simulation algorithms (see e.g.[JMFernandezVS93]), appeared in the
literature recently. The mixed algorithm simulates the hard collisions one by one and uses a MSC theory to treat the
effects of the soft collisions at the end of a given step. Such algorithms can prevent the number of steps from becoming
too large and also reduce the dependence on the step length. GEANT4 original implementation of a similar approach
is realized in G4WentzelVIModel [VNIU10].

The Urban MSC models used in GEANT4 belongs to the class of condensed simulations. Urban uses model functions
to determine the angular and spatial distributions after a step. The functions have been chosen in such a way as to give
the same moments of the (angular and spatial) distributions as are given by the Lewis theory [Lew50].

8.1.2 Definition of Terms

In simulation, a particle is transported by steps through the detector geometry. The shortest distance between the
endpoints of a step is called the geometrical path length, z. In the absence of a magnetic field, this is a straight line.
For non-zero fields, z is the length along a curved trajectory. Constraints on z are imposed when particle tracks cross
volume boundaries. The path length of an actual particle, however, is usually longer than the geometrical path length,
due to multiple scattering. This distance is called the true path length, t. Constraints on ¢ are imposed by the physical
processes acting on the particle.

The properties of the MSC process are determined by the transport mean free paths, A\i,, which are functions of the
energy in a given material. The k-th transport mean free path is defined as

1 ! d
™ = 27N, /_1 [1 — Pg(cos x)] %d(cos X)
where do(x)/dS is the differential cross section of the scattering, Py (cos x) is the k-th Legendre polynomial, and n,,
is the number of atoms per volume.

Most of the mean properties of MSC computed in the simulation codes depend only on the first and second transport
mean free paths. The mean value of the geometrical path length (first moment) corresponding to a given true path

length ¢ is given by
(z) =\ {1 — exp (—t)] 8.1
At

Eq.(8.1) is an exact result for the mean value of z if the differential cross section has axial symmetry and the en-
ergy loss can be neglected. The transformation between true and geometrical path lengths is called the path length
correction. This formula and other expressions for the first moments of the spatial distribution were taken from ei-
ther [JMFernandezVS93] or [KB98], but were originally calculated by Goudsmit and Saunderson [GS40] and Lewis
[Lew50].

At the end of the true step length, ¢, the scattering angle is #. The mean value of cos 6 is
t
(cos ) = exp [] (8.2)
A1

The variance of cos 6 can be written as

o _ 1+ 2077 o

0? = (cos? 0) — (cos 0) 3 —e (8.3)
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where 7 = t/A; and kK = A;/X2. The mean lateral displacement is given by a more complicated formula
[JMFernandezVS93], but this quantity can also be calculated relatively easily and accurately. The square of the mean
lateral displacement is

(@® +y%) =

4)2 K+1 K 1
— — T ———— T 8.4
3 [T K +/<—1e H(K]—l)e 84
Here it is assumed that the initial particle direction is parallel to the the z axis. The lateral correlation is determined
by the equation

2/\1 K 1
— 20 1= -7 KT 8.5
SRS R .
where v, and v, are the x and y components of the direction unit vector. This equation gives the correlation strength
between the final lateral position and final direction.

The transport mean free path values have been calculated in Refs. [LI87], [eal90] for electrons and positrons in the
kinetic energy range in 15 materials. The Urban MSC model in GEANT4 uses these values for kinetic energies below
10 MeV. For high energy particles (above 10 MeV) the transport mean free path values have been taken from a paper
of R. Mayol and F. Salvat [MS97]. When necessary, the model linearly interpolates or extrapolates the transport cross
section, 01 = 1/\1, in atomic number Z and in the square of the particle velocity, 32. The ratio  is a very slowly
varying function of the energy: x > 2 for T' > a few keV, and k — 3 for very high energies (see [KB98]). Hence, a
constant value of 2.5 is used in the model.

Nuclear size effects are negligible for low energy particles and they are accounted for in the Born approximation in
[MS97], so there is no need for extra corrections of this kind in the Urban model.

8.1.3 Path Length Correction

As mentioned above, the path length correction refers to the transformation ¢ — ¢ and its inverse. The t — ¢
transformation is given by Eq.(8.1) if the step is small and the energy loss can be neglected. If the step is not small the
energy dependence makes the transformation more complicated. For this case Eqgs.(8.2),(8.1) should be modified as

(cos ) = exp [— /O t Af&)] (8.6)
(z) = /Ot<cos 0), du 8.7)

where 6 is the scattering angle, ¢ and z are the true and geometrical path lengths, and A; is the transport mean free
path.

In order to compute Eqgs.(8.6),(8.7) the ¢ dependence of the transport mean free path must be known. \; depends on the
kinetic energy of the particle which decreases along the step. All computations in the model use a linear approximation
for this ¢ dependence:

A1(t) = Aio(1 — at) (8.8)

Here )1 denotes the value of \; at the start of the step, and « is a constant. It is worth noting that Eq.(8.8) is not a
crude approximation. It is rather good at low (< 1 MeV) energy. At higher energies the step is generally much smaller
than the range of the particle, so the change in energy is small and so is the change in ;. Using Eqgs.(8.6) - (8.8) the
explicit formula for {cos 6) and (z) are:

(cosf) = (1 — at) ™ (8.9)
_ 1 T
(2) = m {1 - (1-at) } (8.10)
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The value of the constant  can be expressed using A1 and A;; where A is the value of the transport mean free path
at the end of the step

A0 — A1
o= 210 Al

tAio
At low energies ( Tk, < M , where M is the particle mass) « has a simpler form:
1
o= —
To

where r( denotes the range of the particle at the start of the step. It can easily be seen that for a small step (i.e. for a
step with small relative energy loss) the formula of (z) is

(z) = A1o {1 — exp <_Aioﬂ (8.11)

Eq. (8.10) or (8.11) gives the mean value of the geometrical step length for a given true step length. The actual
geometrical path length is sampled in the model according to the simple probability density function defined for
v=z/t€l0,1]:

f) = (k+1)(k +2)v"(1 - v)
The value of the exponent & is computed from the requirement that f(v) must give the same mean value for z = vt as
Eq. (8.10) or (8.11). Hence
3(z) —t
t—(2)
The value of z = vt is sampled using f(v) if k& > 0, otherwise z = (z) is used. The g — ¢ transformation is
performed using the mean values. The transformation can be written as

Hz) = (t) = —Alog (1 _ A)

k=

if the geometrical step is small and

where

if the step is not small, i.e.the energy loss should be taken into account.

8.1.4 Angular Distribution

The quantity u = cos is sampled according to a model function g(u). The shape of this function has been chosen
such that Egs. (8.2) and (8.3) are satisfied. The functional form of g is

g(u) = qlpg1(u) + (1 — p)g2(u)] + (1 — q)g3(u) (8.12)

where 0 < p,q < 1, and the g; are simple functions of u = cos 6, normalized over the range u € [—1, 1]. The
functions g; have been chosen as

g1(u) = C4 e a(1—u) —1<yy<u<l
1

92(u) = Cy m

gg(’u):Cg —1§u§1

where a > 0,b > 0, d > 0 and ug are model parameters, and the C; are normalization constants. It is worth noting that
for small scattering angles, 6, g1 (u) is nearly Gaussian (exp(—62/2602))if 02 ~ 1/a, while g2(u) has a Rutherford-like
tail for large 0, if b ~ 1 and d is not far from 2 .
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8.1.5 Determination of the Model Parameters

The parameters a, b, d, ug and p, ¢ are not independent. The requirement that the angular distribution function g(u)
and its first derivative be continuous at u = u( imposes two constraints on the parameters:

p g1(uo) = (1 — p) ga(uo) (8.13)

pagiun) = (L-p) ;- ga(uo)

A third constraint comes from Eq. (8.6) : g(u) must give the same mean value for u as the theory. It follows from Egs.
(8.9) and (8.12) that

g{plu)ys + (1= p)(u)s} = [ —a t] P (8.14)

where (u); denotes the mean value of « computed from the distribution g;(u). The parameter a was chosen according
to a modified Highland-Lynch-Dahl formula for the width of the angular distribution [Hig75], [LD91].

0 0.5
~ 1 —cos(f)
where 0 is
13.6MeV t t
0p = ———2zept/ — [1+hcn| —
=B ()|

Tms

when the original Highland-Lynch-Dahl formula is used. Here 6y = 677 . is the width of the approximate Gaussian
projected angle distribution, p, Sc and z.}, are the momentum, velocity and charge number of the incident particle, and
t/ X is the true path length in radiation length unit. The correction term 5, = 0.038 in the formula. This value of 6 is
from a fit to the Moliere distribution for singly charged particles with 5 = 1 for all Z, and is accurate to 11% or better
for 1073 < ¢t /Xo < 100 (see e.g. Rev. of Particle Properties, section 23.3).

The model uses a slightly modified Highland-Lynch-Dahl formula to compute 6. For electrons/positrons the modified
0 formula is

13.6MeV
=" FenVue

where

The correction term c¢ and coefficients c; are

c=co(c1 + c2y),
co = 0.990395 — 0.168386.2/¢ + 0.09328621/3,
0.08778
-,
c2 = 0.04078 4 0.00017315Z.

C1 =

This formula gives a much smaller step dependence in the angular distribution than the Highland form. The value of
the parameter ug has been chosen as

UOZI—g

where

€ =dy + dov + d3v® + dgv?
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with

v=1In <;1)

di = dip + dp Z5 + dinZ3

The parameters d;-s have the form

The numerical values of the d;; constants can be found in the code.
The tail parameter d is the same as the parameter & .

This (empirical) expression is obtained comparing the simulation results to the data of the MuScat experiment [eal06].
The remaining three parameters can be computed from Eqs. (8.13) - (8.14). The numerical value of the parameters
can be found in the code.

In the case of heavy charged particles (u, 7, p, etc.) the mean transport free path is calculated from the electron or
positron \; values with a ’scaling’ applied. This is possible because the transport mean free path \; depends only on
the variable PS¢, where P is the momentum, and Sc is the velocity of the particle.

In its present form the model samples the path length correction and angular distribution from model functions, while
for the lateral displacement and the lateral correlation only the mean values are used and all the other correlations are
neglected. However, the model is general enough to incorporate other random quantities and correlations in the future.

8.1.6 Step Limitation Algorithm

In GEANT4 the boundary crossing is treated by the transportation process. The transportation ensures that the particle
does not penetrate in a new volume without stopping at the boundary, it restricts the step size when the particle leaves
a volume. However, this step restriction can be rather weak in big volumes and this fact can result a not very good
angular distribution after the volume. At the same time, there is no similar step limitation when a particle enters a
volume and this fact does not allow a good backscattering simulation for low energy particles. Low energy particles
penetrate too deeply into the volume in the first step and then, because of energy loss, they are not able to reach again
the boundary in backward direction.

MSC step limitation algorithm has been developed [Urb06] in order to achieve optimal balance between simulation
precision and CPU performance of simulation for different applications. At the start of a track or after entering in a
new volume, the algorithm restricts the step size to a value

fr - max{r, A\1}

where r is the range of the particle, f,. is a parameter € [0, 1], taking the max of r and )\ is an empirical choice. The
value of f,. is constant for low energy particles while for particles with A\; > \;;,,, an effective value is used given by
the scaling equation

A
fTEff_fr‘|:156+SC* 1:|
>\lim
(The numerical values sc = 0.25 and A;;,, = 1 mm are used in the equation.) In order not to use very small -
unphysical - step sizes a lower limit is given for the step size as

AL

— )\elastic
nstepmax

tlimitmin = mazx [

with nstepmaz = 25 and A¢jqs14c 1S the elastic mean free path of the particle (see later). It can be easily seen that this
kind of step limitation poses a real constraint only for low energy particles. In order to prevent a particle from crossing
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a volume in just one step, an additional limitation is imposed: after entering a volume the step size cannot be bigger
than

dgeom

fo

where dgeom is the distance to the next boundary (in the direction of the particle) and f, is a constant parameter. A
similar restriction at the start of a track is
2dgeom
fo
At this point the program also checks whether the particle has entered a new volume. If it has, the particle steps cannot

be bigger than ¢;;,,, = f. max(r, \). This step limitation is governed by the physics, because ¢;;,,, depends on the
particle energy and the material.

The choice of the parameters f, and f, is also related to performance. By default f, = 0.02 and f;, = 2.5 are used,
but these may be set to any other value in a simple way. One can get an approximate simulation of the backscattering
with the default value, while if a better backscattering simulation is needed it is possible to get it using a smaller value
for f,.. However, this model is very simple and it can only approximately reproduce the backscattering data.

8.1.7 Boundary Crossing Algorithm

A special stepping algorithm has been implemented in order to improve the simulation around interfaces. This algo-
rithm does not allow ‘big’ last steps in a volume and ‘big’ first steps in the next volume. The step length of these steps
around a boundary crossing can not be bigger than the mean free path of the elastic scattering of the particle in the
given volume (material). After these small steps the particle scattered according to a single scattering law (i.e.there is
no multiple scattering very close to the boundary or at the boundary).

The key parameter of the algorithm is the variable called skin. The algorithm is not active for skin < 0, while for
skin > 0 itis active in layers of thickness skin - Acjqstic before boundary crossing and of thickness (skin—1)- Aejastic
after boundary crossing (for skin = 1 there is only one small step just before the boundary). In this active area the
particle performs steps of length \.;,s+ic (or smaller if the particle reaches the boundary traversing a smaller distance
than this value).

The scattering at the end of a small step is single or plural and for these small steps there are no path length correction
and lateral displacement computation. In other words the program works in this thin layer in ‘microscopic mode’. The
elastic mean free path can be estimated as

Aelastic = A1 - Tat (Tki,n)

where rat(Ty,) a simple empirical function computed from the elastic and first transport cross section values of
Mayol and Salvat [MS97]

0.001(MeV)?2

rat Thin) = 2 T + 10MeV)

Tiin 1s the kinetic energy of the particle.

At the end of a small step the number of scatterings is sampled according to the Poisson’s distribution with a mean
value ¢/ Aejqstic and in the case of plural scattering the final scattering angle is computed by summing the contributions
of the individual scatterings. The single scattering is determined by the distribution

1

90) = a1 e

where u = cos(f) , a is the screening parameter, C' is a normalization constant. The form of the screening parameter
is the same as in the single scattering (see there).
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8.1.8 Implementation Details

The step length of a particles is determined by the physics processes or the geometry of the detectors. The track-
ing/stepping algorithm checks all the step lengths demanded by the (continuous or discrete) physics processes and
determines the minimum of these step lengths (see True Step Length). The MSC model should be called to compute
step limit after all processes except the transportation process. The following sequence of computations are performed
to make the step:

* the minimum of all processes true step length limit ¢ including one of the MSC process is selected;
* The conversion t — g (geometrical step limit) is performed;

¢ the minimum of obtained value g and the transportation step limit is selected;

* The final conversion g — ¢ is performed.

The reason for this ordering is that the physics processes ‘feel’ the true path length ¢ traveled by the particle, while the
transportation process (geometry) uses the z step length.

A new optional mechanism was recently introduced allowing sample displacement in the vicinity of geometry bound-
ary. If it is enabled and transportation limits the step due to a geometry boundary, then after initial sampling of the
displacement an additional ‘push’ of the track is applied forcing the end point be at the boundary. Corresponding
correction to the true step length is applied according to the value of the ‘push’.

After the actual step of the particle is done, the MSC model is responsible for sampling of scattering angle and
relocation of the end-point of the step. The scattering angle 6 of the particle after the step of length ¢ is sampled
according to the model function given in Eq.” (8.12) . The azimuthal angle ¢ is generated uniformly in the range
[0, 27].

After the simulation of the scattering angle, the lateral displacement is computed using Eq. (8.4). Then the correlation
given by Eq. (8.5) is used to determine the direction of the lateral displacement. Before 'moving’ the particle according
to the displacement a check is performed to ensure that the relocation of the particle with the lateral displacement does
not take the particle beyond the volume boundary.

Default MSC parameter values optimized per particle type are shown in Table 8.1. Note, that there are four types of
step limitation by multiple scattering process:

e Minimal - only f, parameter and range are used;
e UseSafety - f, parameter, range and geometrical safety are used;
* UseSafetyPlus - f, parameter, range and geometrical safety are used;

* UseDistanceToBoundary - uses particle range, geometrical safety and linear distance to geometrical
boundary.

Table 8.1: The default values of parameters for different particle type.

particle et, e muons, hadrons | ions
StepLimitType fUseSafety | fMinimal fMinimal
skin 0 0 0

fr 0.04 0.2 0.2

fq 2.5 0.1 0.1
LateralDisplacement | true false false

The parameters of the model can be changed via public functions of the base class G4VMultipleSacttering. They
can be changed for all multiple scattering processes simultaneously via G4EmParameters class, G4EmProcessOptions
class, or via GEANT4 Ul commands. The following commands are available:
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/process/msc/SteplLimit UseDistanceToBoundary
/process/msc/LateralDisplacement false
/process/msc/MuHadLateralDisplacement false
/process/msc/DisplacementBeyondSafety true
/process/msc/RangeFactor 0.02
/process/msc/GeomFactor 2.5
/process/msc/Skin 2

8.2 Single Scattering

Single elastic scattering process is an alternative to the multiple scattering process. The advantage of the single scat-
tering process is in possibility of usage of theory based cross sections, in contrary to the GEANT4 multiple scattering
model [Urb06], which uses a number of phenomenological approximations on top of Lewis theory. The process
G4CoulombScattering was created for simulation of single scattering of muons, it also applicable with some phys-
ical limitations to electrons, muons and ions. Because each of elastic collisions are simulated the number of steps
of charged particles significantly increasing in comparison with the multiple scattering approach, correspondingly its
CPU performance is poor. However, in low-density media (vacuum, low-density gas) multiple scattering may provide
wrong results and single scattering processes are more appropriate.

8.2.1 Coulomb Scattering

The single scattering model of Wentzel [Wen27] is used in many multiple scattering models including the Penelope
code [JMFernandezVS93]. The Wentzel model for describing elastic scattering of particles with charge ze (z = —1
for electron) by atomic nucleus with atomic number Z is based on simplified scattering potential

V(r) = “25 expl(-r/R).

where the exponential factor tries to reproduce the effect of screening. The parameter R is a screening radius [Bet53]
R =0.8852""3rp,
where 7 is the Bohr radius. In the first Born approximation the elastic scattering cross section (") can be obtained

as

do"M)(0)  (ze?)? Z(Z+1) 8.15)
dQ  (pBc)? (2A +1 —cosh)?’ )

where p is the momentum and S is the velocity of the projectile particle. The screening parameter A according to
Moliere and Bethe [Bet53]

A= (223) (1.13 + 3.76(aZ/8)?),

where « is the fine structure constant and the factor in brackets is used to take into account second order corrections
to the first Born approximation. The total elastic cross section o can be expressed via Wentzel cross section (8.15):

(w)
dzg) _ dade) ( (qzw : +1> Zl y 5.16)
(14 55) +

where ¢ is momentum transfer to the nucleus, Ry is nuclear radius. This term takes into account nuclear size effect
[eal02], the second term takes into account scattering off electrons. The results of simulation with the single scattering
model (Fig. 8.1) are competitive with the results of the multiple scattering.
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172 MeVic muon scaftering off Al 1.5 mm, Geantd 9.0
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Fig. 8.1: Scattering of muons off 1.5 mm aluminum foil: data [eal06] - black squares; simulation - colored mark-
ers corresponding different options of multiple scattering and single scattering model; in the bottom plot - relative
difference between the simulation and the data in percents; hashed area demonstrates one standard deviation of the
data.

8.2.2 Implementation Details

The total cross section of the process is obtained as a result of integration of the differential cross section (8.16). The
first term of this cross section is integrated in the interval (0, 7). The second term in the smaller interval (0,6,,),
where 6, is the maximum scattering angle off electrons, which is determined using the cut value for the delta electron
production. Before sampling of angular distribution the random choice is performed between scattering off the nucleus
and off electrons.

8.3 lon Scattering

The necessity of accurately computing the characteristics of interatomic scattering arises in many disciplines in which
energetic ions pass through materials. Traditionally, solutions to this problem not involving hadronic interactions
have been dominated by the multiple scattering, which is reasonably successful, but not very flexible. In particular,
it is relatively difficult to introduce into such a system a particular screening function which has been measured for a
specific atomic pair, rather than the universal functions which are applied. In many problems of current interest, such
as the behavior of semiconductor device physics in a space environment, nuclear reactions, particle showers, and other
effects are critically important in modeling the full details of ion transport. The process G4ScreenedNuclearRecoil
provides simulation of ion elastic scattering [MWO0S5]. This process is available with extended electromagnetic example
TestEm7.

8.3.1 Method

The method used in this computation is a variant of a subset of the method described in Ref.[MWO91]. A very short
recap of the basic material is included here. The scattering of two atoms from each other is assumed to be a completely
classical process, subject to an interatomic potential described by a potential function

=222

where Z; and Z, are the nuclear proton numbers, €2 is the electromagnetic coupling constant (g2 /4meq in SI units),
r is the inter-nuclear separation, ¢ is the screening function describing the effect of electronic screening of the bare
nuclear charges, and « is a characteristic length scale for this screening. In most cases, ¢ is a universal function used
for all ion pairs, and the value of a is an appropriately adjusted length to give reasonably accurate scattering behavior.
In the method described here, there is no particular need for a universal function ¢, since the method is capable of
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directly solving the problem for most physically plausible screening functions. It is still useful to define a typical
screening length a in the calculation described below, to keep the equations in a form directly comparable with our
previous work even though, in the end, the actual value is irrelevant as long as the final function ¢(r) is correct.
From this potential V' (r) one can then compute the classical scattering angle from the reduced center-of-mass energy
e = E.a/7Z, Z»€? (where E. is the kinetic energy in the center-of-mass frame) and reduced impact parameter 3 = b/a

O.=m— 25/00 f(2)dz/2*

where

zZE€ 22

f) = (1 ON 52)1/2

and z, is the reduced classical turning radius for the given € and .

The problem, then, is reduced to the efficient computation of this scattering integral. In our previous work, a great deal
of analytical effort was included to proceed from the scattering integral to a full differential cross section calculation,
but for application in a Monte-Carlo code, the scattering integral 6.(Z;, Z2, E., b) and an estimated total cross section
0o(Z1, Za, E.) are all that is needed. Thus, we can skip algorithmically forward in the original paper to equations 15-
18 and the surrounding discussion to compute the reduced distance of closest approach z,. This computation follows
that in the previous work exactly, and will not be reintroduced here.

For the sake of ultimate accuracy in this algorithm, and due to the relatively low computational cost of so doing,
we compute the actual scattering integral (as described in equations 19-21 of [MW91]) using a Lobatto quadrature
of order 6, instead of the 4th order method previously described. This results in the integration accuracy exceeding
that of any available interatomic potentials in the range of energies above those at which molecular structure effects
dominate, and should allow for future improvements in that area. The integral « then becomes (following the notation
of the previous paper)

4

14+ X, , T,
~ : — 8.17
a 0 +;w1f<qi (8.17)

where

1 62 ¢/($0) -1/2
A°:(2+2xg_ 2 ) (819

w; € [0.03472124,0.1476903, 0.23485003, 0.1860249]

¢; € [0.9830235,0.8465224,0.5323531, 0.18347974]
Then

whBa

0, =m—
Lo

The other quantity required to implement a scattering process is the total scattering cross section o, for a given incident
ion and a material through which the ion is propagating. This value requires special consideration for a process such
as screened scattering. In the limiting case that the screening function is unity, which corresponds to Rutherford
scattering, the total cross section is infinite. For various screening functions, the total cross section may or may not
be finite. However, one must ask what the intent of defining a total cross section is, and determine from that how to
define it.

In GEANT4, the total cross section is used to determine a mean-free-path [, which is used in turn to generate random
transport distances between discrete scattering events for a particle. In reality, where an ion is propagating through,
for example, a solid material, scattering is not a discrete process but is continuous. However, it is a useful, and highly
accurate, simplification to reduce such scattering to a series of discrete events, by defining some minimum energy
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transfer of interest, and setting the mean free path to be the path over which statistically one such minimal transfer has
occurred. This approach is identical to the approach developed for the original TRIM code [BH80]. As long as the
minimal interesting energy transfer is set small enough that the cumulative effect of all transfers smaller than that is
negligible, the approximation is valid. As long as the impact parameter selection is adjusted to be consistent with the
selected value of [,,, the physical result isn’t particularly sensitive to the value chosen.

Noting, then, that the actual physical result isn’t very sensitive to the selection of [, one can be relatively free about
defining the cross section o, from which [,, is computed. The choice used for this implementation is fairly simple.
Define a physical cutoff energy F,,;, which is the smallest energy transfer to be included in the calculation. Then,
for a given incident particle with atomic number Z;, mass m1, and lab energy E;, ., and a target atom with atomic
number Z> and mass mso, compute the scattering angle 6. which will transfer this much energy to the target from the
solution of

E _ 4 mimso .2 90
min — Hinc — 3 si” —
(m1 4 mo)

Then, noting that « from Eq.(8.17) is a number very close to unity, one can solve for an approximate impact parameter
b with a single root-finding operation to find the classical turning point. Then, define the total cross section to be
o, = wb?, the area of the disk inside of which the passage of an ion will cause at least the minimum interesting
energy transfer. Because this process is relatively expensive, and the result is needed extremely frequently, the values
of 0o(E;nc) are precomputed for each pairing of incident ion and target atom, and the results cached in a cubic-spline
interpolation table. However, since the actual result isn’t very critical, the cached results can be stored in a very
coarsely sampled table without degrading the calculation at all, as long as the values of the [, used in the impact
parameter selection are rigorously consistent with this table.

The final necessary piece of the scattering integral calculation is the statistical selection of the impact parameter b
to be used in each scattering event. This selection is done following the original algorithm from TRIM, where the
cumulative probability distribution for impact parameters is

P(b) =1 —exp (_”b2>

()

where N o, = 1/1,, where N is the total number density of scattering centers in the target material and [,, is the mean
free path computed in the conventional way. To produce this distribution from a uniform random variate r on (0,1],
the necessary function is

—logr

b:
TN,

This choice of sampling function does have the one peculiarity that it can produce values of the impact parameter
which are larger than the impact parameter which results in the cutoff energy transfer, as discussed above in the
section on the total cross section, with probability 1/e. When this occurs, the scattering event is not processed further,
since the energy transfer is below threshold. For this reason, impact parameter selection is carried out very early in the
algorithm, so the effort spent on uninteresting events is minimized.

The above choice of impact sampling is modified when the mean-free-path is very short. If o, > 7 (%) ? where [ is the
approximate lattice constant of the material, as defined by I = N ~'/3, the sampling is replaced by uniform sampling
on a disk of radius [/2, so that

b= —r

2 vr
This takes into account that impact parameters larger than half the lattice spacing do not occur, since then one is closer
to the adjacent atom. This also derives from TRIM.

One extra feature is included in our model, to accelerate the production of relatively rare events such as high-angle
scattering. This feature is a cross-section scaling algorithm, which allows the user access to an unphysical control of
the algorithm which arbitrarily scales the cross-sections for a selected fraction of interactions. This is implemented as
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a two-parameter adjustment to the central algorithm. The first parameter is a selection frequency f;, which sets what
fraction of the interactions will be modified. The second parameter is the scaling factor for the cross-section. This is
implemented by, for a fraction f}, of interactions, scaling the impact parameter by b’ = b/+/scale. This feature, if used
with care so that it does not provide excess multiple-scattering, can provide between 10 and 100-fold improvements
to event rates. If used without checking the validity by comparing to un-adjusted scattering computations, it can also
provide utter nonsense.

8.3.2 Implementation Details

The coefficients for the summation to approximate the integral for o in Eq.(8.17) are derived from the values in
Abramowitz & Stegun [MAG5], altered to make the change-of-variable used for this integral. There are two basic
steps to the transformation. First, since the provided abscissas x; and weights w; are for integration on [-1,1], with
only one half of the values provided, and in this work the integration is being carried out on [0,1], the abscissas are

transformed as:
1 Fx;
i €
ne {5

Then, the primary change-of-variable is applied resulting in:

g; = cos -
2
w) = 2 sin T
! 2 2

except for the first coefficient w where the sin() part of the weight is taken into the limit of \, as described in Eq.(8.18).
This value is just w] = wy /2.

8.4 Single Scattering, Screened Coulomb Potential and NIEL

An alternative model of Coulomb scattering of ions have been developed based on [eall 1] and references therein. The
advantage of this model is the wide applicability range in energy from 50 keV to 100V TeV per nucleon.

8.4.1 Nucleus—Nucleus Interactions

As discussed in Ref. [eall1], at small distances from the nucleus, the potential energy is a Coulomb potential, while,
at distances larger than the Bohr radius, the nuclear field is screened by the fields of atomic electrons. The interaction
between two nuclei is usually described in terms of an interatomic Coulomb potential (e.g., see Section 2.1.4.1 of
Ref. [LRO9] and Section 4.1 of Ref. [eal93]), which is a function of the radial distance r between the two nuclei

2
V(r) = ZZre Uy (ry), (8.19)

where ez (projectile) and eZ (target) are the charges of the bare nuclei, Uy is the interatomic screening function, and
ry 1s given by

r

= —

ar
with aj the screening length (also termed screening radius). In the framework of the Thomas—Fermi model of the
atom (e.g., see Ref. [eall 1] and references therein), and thus following the approach of ICRU Report 49 [eal93], a
commonly used screening length for z = 1 incoming particles is that from Thomas—Fermi

_ Crrag

aTyF — W 5 (820)
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and, for incoming particles with z > 2, that introduced by Ziegler et al. [JFZL85] (and termed universal screening
length):
Crr ag

AU = 023 4 7023 (8.21)

where

h2
a = —
me?

is the Bohr radius, m is the electron rest mass and

1/37\%?
Crp=-(25)  ~0.88534
- 2<4)

is a constant introduced in the Thomas—Fermi model.

The simple scattering model due to Wentzel [Wen26], with a single exponential screening function ¥y(r;) (e.g., see
Ref. [eall1] and references therein), was repeatedly employed in treating single and multiple Coulomb-scattering
with screened potentials. The resulting elastic differential cross section differs from the Rutherford differential cross
section by an additional term, the screening parameter, which prevents the divergence of the cross section when the
angle 0 of scattered particles approaches 0°. The screening parameter A (e.g., see Eq. (21) of [Bet53]) as derived by
Moliere [Moliere47][Moliere48] for the single Coulomb scattering using a Thomas—Fermi potential is expressed as

h 2 azZ\?
Ay = 1.13 + 3.76 x
(217@1) ( B )

ay is the screening length from Eqs.(8.20) — (8.21) for particles with z = 1 and z > 2, respectively; « is the fine-
structure constant; p Sc is the momentum (velocity) of the incoming particle undergoing the scattering onto a target
supposed to be initially at rest; ¢ and # are the speed of light and the reduced Planck constant, respectively. When the
(relativistic) mass, corresponding to rest mass m, of the incoming particle is much lower than the rest mass M of the
target nucleus, the differential cross section obtained from the Wentzel-Moliére treatment of the single scattering is:

do"VM(9) <z262>2 1
dQ 2pBe) A, +sin®(6/2)]

(8.22)

(8.23)

Equation (8.23) differs from Rutherford’s formula, as already mentioned, for the additional term Ay to sin?(6/2). As
discussed in Ref. [eal11], for 5 ~ 1 (i.e., at very large p) and with Ay < 1, one finds that the cross section approaches
a constant:

2 2
oM ~ <2ZZ€ ‘”) il . (8.24)
he 1.1343.76 x (azZ)

As discussed in Ref. [eall1] and references therein, for a scattering under the action of a central potential (for instance
that due to a screened Coulomb field), when the rest mass of the target particle is no longer much larger than the
relativistic mass of the incoming particle, the expression of the differential cross section must properly be re-written
in the center of mass system in terms of an “effective particle” with momentum equal to that of the incoming particle
(pl,,) and rest mass equal to the relativistic reduced mass

mM

Hrel = m (8.25)

M, o is the invariant mass; m and M are the rest masses of the incoming and target particles, respectively. The
“effective particle” velocity is given by:
Hrel€ 27
1+ ( rel ) :
Pin
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Thus, one finds (e.g, see Ref. [eall1]):

daWM (") 27\’ 1
— === 55 (8.26)
dQ 2pi Brc)  [Aq+sin®(0/2)]
with
2 2
A, = ,h 113+ 3.76 x | 22 (8.27)
2pin ar BI‘

and ¢’ the scattering angle in the center of mass system.

The energy T transferred to the recoil target is related to the scattering angle as T' = T, sin” (6’/2), where T)qz is
the maximum energy which can be transferred in the scattering (e.g., see Section 1.5 of Ref. [LR09]), thus, assuming
an isotropic azimuthal distribution one can re-write Eq.(8.26) in terms of the kinetic recoil energy 7' of the target

WM 2\ 2
do” °(T) _, ( 24¢ ) Tmar (8.28)
dr Pin B¢/ [Trae As + T
Furthermore, one can demonstrate that Eq.(8.28) can be re-written as (e.g, see Ref. [eall1]);
doWM(T) 2 E? 1
= )9 Ze? .
dT m(22) e [Tas As + T (829

with p and E the momentum and total energy of the incoming particle in the laboratory. Equation (8.29) expresses, as
already mentioned, the differential cross section as a function of the (kinetic) energy 1" achieved by the recoil target.

8.4.2 Nuclear Stopping Power
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Fig. 8.2: Nuclear stopping power from Ref. [eal11] in MeV ¢cm ? g ! calculated using Eq.(8.30) in silicon shown as a
function of the kinetic energy per nucleon from 50 keV/nucleon up 100 TeV/nucleon for protons, a-particles and ''B,
12¢ 288, 36Fe, 1151Tn, 208Pp puclei.

Using Eq. (8.29), the nuclear stopping power in MeVem ™! is obtained as
dE 2 E? Ay As+1
— = =2 Ze?) —— > —1+1 2 . 8.30
() =207 7 i 1o (%) 639
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n 4 is the number of nuclei (atoms) per unit of volume and, the negative sign indicates that the energy is lost by the
incoming particle. As discussed in Ref. [eal11], a slight increase of the nuclear stopping power with energy is expected
because of the decrease of the screening parameter with energy.

For instance, in Fig. 8.2 the nuclear stopping power in silicon is shown as a function of the kinetic energy per nucleon
for protons, a-particles and B 12 288§ 36Fe, 1151n, 208Pp puclei.

A comparison of the present treatment with that obtained from Ref. [JFZL85], available in SRIM (2008) [JFZ08],
using the universal screening potential (see also Ref. [ZBZ08]) is discussed in Ref. [eall1]: a good agreement is
achieved down to about 150 keV/nucleon. At large energies, the non-relativistic approach due to Ref. [JFZLS85]
becomes less appropriate and deviations from stopping powers calculated by means of the universal screening potential
are expected and observed.

The non-relativistic approach based on the universal screening potential of [JFZL85] was also used by ICRU (1993)
[eal93] to calculate nuclear stopping powers due to protons and a-particles in materials. ICRU (1993) used as screening
lengths those from Eqgs.(8.20) for protons and (8.21) for a-particles, respectively. As discussed in Ref. [ealll], the
stopping powers for protons (a-particles) from Eq.(8.30) are less than ~ 5% larger than those reported by ICRU (1993)
[eal93] from 50 keV/nucleon up to = 8MeV (19 MeV/nucleon). At larger energies the stopping powers from Eq.(8.30)
differ from those from ICRU, as expected, due to the complete relativistic treatment of the present approach (see
Ref. [eal11]).

The simple screening parameter used so far (Eq.(8.27)), derived by Moliere [Moliere47]), can be modified by means
of a practical correction, i.e.,
2
A = h
° 2p;, ar

to achieve a better agreement with low energy calculations of [JEZL85]. For instance, as discussed in Ref. [eal11], for
a-particles and heavier ions, with

) (8.31)

azZ 2
1.13+3.76><C’( 3 )

C = (10r2Z20)""? (8.32)

the stopping powers obtained from Eq.(8.30) (in which A/ replaces A;) differ from the values of SRIM (2008) by less
than ~ 4.7 (3.6)% for a-particles (lead ions) in silicon down to about 50 keV/nucleon. With respect to the tabulated
values of ICRU (1993), the agreement for a-particles is usually better than 4% at low energy down to 50 keV/nucleon.
A 5% agreement is achieved at about 50 keV/nucleon in case of a lead medium. At very high energy, the stopping
power is slightly affected when AL replaces Ag (Ref. [eall1]).

8.4.3 Non-lonizing Energy Loss due to Coulomb Scattering

A relevant process which causes permanent damage to the silicon bulk structure is the displacement damage (e.g., see
Chapter 4 of Ref. [LR09], Ref. [LR07] and references therein). Displacement damage may be inflicted when a primary
knocked-on atom (PKA) is generated. The interstitial atom and relative vacancy are termed a Frenkel pair (FP). In turn,
the displaced atom may have sufficient energy to migrate inside the lattice and, by further collisions, can displace other
atoms as in a collision cascade. This displacement process modifies the bulk characteristics of the device and causes
its degradation. The total number of FPs can be estimated calculating the energy density deposited from displacement
processes. In turn, this energy density is related to the Non-Ionizing Energy Loss (NIEL), i.e., the energy per unit path
lost by the incident particle due to displacement processes.

In case of Coulomb scattering on nuclei, the non-ionizing energy loss can be calculated using the Wentzel-Moliere
differential cross section (Eq.(8.29)) discussed in Single Scattering, Screened Coulomb Potential and NIEL, i.e.,

NIEL Traw WM
- (‘fg) =4 / T L(T) CZUT(T) ar, (8.33)
Ta

nucl

where FE is the kinetic energy of the incoming particle, T is the kinetic energy transferred to the target atom, L(7')
is the fraction of T" deposited by means of displacement processes. The expression of L(7T'), denoted the Lindhard
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Fig. 8.3: Non-ionizing stopping power from Ref. [eall ] calculated using Eq.(8.33) in silicon is shown as a function
of the kinetic energy per nucleon, from 50 keV/nucleon up 100 TeV/nucleon, for protons, a-particles and g 12,
2884, 3%Fe, '5In, 2%8Pb nuclei. The threshold energy for displacement is 21 eV in silicon.

partition function, can be found, for instance, in Equations (4.94, 4.96) of Section 4.2.1.1 in Ref. [LR09] and references
therein. Ty = T L(T) is the damage energy, i.e., the energy deposited by a recoil nucleus with kinetic energy T via
displacement damages inside the medium. The integral in Eq.(8.33) is computed from the minimum energy 7};, denoted
the threshold energy for displacement, i.e., that energy necessary to displace the atom from its lattice position, up to
the maximum energy 7,,,,, that can be transferred during a single collision process. T} is about 21 eV in silicon. For
instance, in Fig. 8.3 the non-ionizing energy loss in silicon is shown as a function of the kinetic energy per nucleon for
protons, a-particles and ''B, 12C, 28Si, *°Fe, !'3In, 2°*Pb nuclei.

A further discussion on the agreement with the results obtained by Jun et al. [eal03], using a relativistic treatment of
Coulomb scattering of protons with kinetic energies from 50 MeV to 1 GeV on silicon, can be found in Ref. [eall1].

8.4.4 G4lonCoulombScatteringModel

As discussed so far, high energy particles may inflict permanent damage to the electronic devices employed in a
radiation environment. In particular the nuclear energy loss is important for the formation of defects in semiconductor
devices. Nuclear energy loss is also responsible for the displacement damage which is the typical cause of degradation
for silicon devices. The electromagnetic model G4lonCoulombScatteringModel was created in order to simulate the
single scattering of protons, alpha particles and all heavier nuclei incident on all target materials in the energy range
from 50-100 keV/nucleon to 10 TeV.
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8.4.5 The Method

The differential cross section previously described is calculated by means of the class G4lonCoulombCrossSection
where a modified version of the Wentzel’s cross section is used. To solve the scattering problem of heavy ions it is
necessary to introduce an effective particle whose mass is equal to the relativistic reduced mass of the system defined
as

_ m1m202

M = E.

my and my are the incident and target rest masses respectively, and E.,, (in Eq.(8.25), M1 2 = Ecp,/ c?) is the total
center of mass energy of the two particle system. The effective particle interacts with a fixed scattering center with
interacting potential expressed by Eq.(8.19). The momentum of the effective particle is equal to the momentum of the
incoming particle calculated in the center of mass system (p,. = p;.,,,)- Since the target particle is inside the material
it can be considered at rest in the laboratory, and as a consequence the magnitude of p,. is calculated as

2

mocC
Pr = Plem = pllabm7
with E.,, given by
Eem =/ (m1¢2)2 4 (mc)? + 2B 5mac?, (8.34)

where pjiqp is the momentum, and Eyj,;, the total energy, of the incoming particle in the laboratory system. The
velocity 3, of the effective particle is obtained by the relation

2
1 i 2
Loy
Bz pbrc
The modified Wentzel’s cross section is then equal to:

2\ 2
dO’((gr) _ Z1Z2€ 1 (835)
dQ prc By (245 4+ 1 —cos6,.)?

(in Eq.(8.26)) p},, = p, where Z; and Z, are the nuclear proton numbers of projectile and of target respectively; A
is the screening coefficient (see Eq.(8.27)) and 6, is the scattering angle of the effective particle which is equal to the
one in the center of mass system (6, = 601.,,). Knowing the scattering angle, the recoil kinetic energy of the target
particle after scattering is calculated by

2

T = mayc? Pilabe (1 —cosb,). (8.36)
Ecm

The momentum and the total energy of the incident particle after scattering in the laboratory system are obtained by

the usual Lorentz transformations.

8.4.6 Implementation Details

In the G4IonCoulombScatteringModel the scattering off electrons is not considered: only scattering off nuclei is
simulated. Secondary particles are generated when 7" of Eq.(8.36) is greater than a given threshold for displacement
Ty; it is not cut in range. The user can set this energy threshold 7, by the method SetRecoilThreshold(G4double Td).
The default screening coefficient A, is given by Eq.(8.27). If the user wants to use the one given by Eq.(8.31) the
condition SetHeavylonCorr(1) must be set. When Z; = 1, the Thomas-Fermi screening length (arr of Eq. (8.20))
is used in the calculation of A,. For Z; > 2 the screening length is the universal one (ay of Eq. (8.21)). In the
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G4lonCoulombCrossSection the total differential cross section is obtained by the method NuclearCrossSection() where
the Eq.(8.35) is integrated in the interval (0, 7):

2\ 2
azﬂ(ZlZZe ) 1 (8.37)
prc Br As(As +1)

The cosine of the scattering angle is chosen randomly in the interval (-1, 1) according to the distribution of the total
cross section and it is given by the method SampleCosineTheta() which returns (1 — cos 6,.).

8.5 Electron Screened Single Scattering and NIEL

The present treatment [eal12] of electron—nucleus interaction is based on numerical and analytical approximations of
the Mott differential cross section. It accounts for effects due to screened Coulomb potentials, finite sizes and finite
rest masses of nuclei for electron with kinetic energies above 200 keV and up to ultra high. This treatment allows
one to determine both the total and differential cross sections, thus, to calculate the resulting nuclear and non-ionizing
stopping powers (NIEL). Above a few hundreds of MeV, neglecting the effects of finite sizes and rest masses of recoil
nuclei the stopping power and NIEL result to be largely underestimated, while, above a few tens of MeV prevents a
further large increase, thus, resulting in approaching almost constant values at high energies.

The non-ionizing energy loss (NIEL) is the energy lost from a particle traversing a unit length of a medium through
physical process resulting in permanent displacement damages (e.g. see Ref.[LR07]). The nuclear stopping power
and NIEL deposition due to elastic Coulomb scatterings from protons and light and heavy ions traversing an absorber
were previously described [eall 1] and are available in GEANT4 (Single Scattering, Screened Coulomb Potential and
NIEL) (see also Sections 1.6, 1.6.1,2.1.4-2.1.4.2, 4.2.1.6 of Ref. [LR11]). In the present model included in GEANT4,
the nuclear stopping power and NIEL deposition due to elastic Coulomb scatterings of electrons are treated up to ultra
relativistic energies.

8.5.1 Scattering Cross Section of Electrons on Nuclei

The scattering of electrons by unscreened atomic nuclei was treated by Mott extending a method of Wentzel dealing
with incident and scattered waves on point-like nuclei and including effects related to the spin of electrons. The
differential cross section (DCS), denoted the Mott differential cross section (MDCS), was expressed by Mott as two
conditionally convergent infinite series in terms of Legendre expansions. In Mott—Wentzel treatment, the scattering
occurs on a field of force generating a radially dependent Coulomb, unscreened (screened) in Mott (Wentzel), potential.
Furthermore, the MDCS was derived in the laboratory reference system for infinitely heavy nuclei initially at rest with
negligible spin effects and must be numerically evaluated for any specific nuclear target. Effects related to the recoil
and finite rest mass of the target nucleus (M) were neglected. Thus, in this framework the total energy of electrons
has to be smaller or much smaller than M c?.

The MDCS is usually expressed as:

do.Mott(e) _ dURut RMott’ (838)

a dQ

where RMet ig the ratio between the MDCS and Rutherford’s formula (RDCS, see Equation (1) of Ref. [eal12]). For
electrons with kinetic energies from several keV up to 900 MeV and target nuclei with 1 < Z < 90, Lijian et al.
[LQZI95] provided a practical interpolated expression (Eq.(8.48)) for RMott with an average error less than 1%; in the
present treatment, that expression (Interpolated Expression for ) is the one assumed for RM°* in Eq.(8.38) hereafter.
The analytical expression derived by McKinley and Feshbach [MF48] for the ratio with respect to Rutherford’s formula
(Eq.(7) of Ref. [MF48]) is given by:

RMHF =1 — 5%sin?(0/2) + Z afrsin(0/2) [1 — sin(0/2))] (8.39)
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with the corresponding differential cross section (McFDCS)

dO’MCF do_Rut

Q. — dQ RUE. (8.40)

Furthermore, for Mc? much larger than the total energy of incoming electron energies the distinction between labo-
ratory (i.e., the system in which the target particle is initially at rest) and center-of-mass (CoM) systems disappears
(e.g., see discussion in Section 1.6.1 of Ref. [LR11]). Furthermore, in the CoM of the reaction the energy transferred
from an electron to a nucleus initially at rest in the laboratory system (i.e., its recoil kinetic energy 7') is related with
the maximum energy transferable T}« as

T = Thax sin?(0'/2) (8.41)
(e.g., see Egs. (1.27, 1.95) at page 11 and 31, respectively, of Ref. [LR11]), where ¢’ is the scattering angle in the
CoM system. In addition, one obtains

Tm ax

dT =
47

asy’. (8.42)

Since for M ¢? much larger than the electron energy, § ~ ', one finds that Eq.(8.41) can be approximated as

T ~ Thaxsin® (0/2), (8.43)
— sin? (0/2) = - (8.44)
and
dl ~ % ds. (8.45)
Using Eqgs.(8.39), (8.44), (8.45), Rutherford’s formula and Eq.(8.40) can be respectively rewritten as:
doRut B <Z62> 2 T max
dr pBe T2 7’
c 2
da;/[ ’ = (5;2) 7771’:121&,( 1 —ﬁTfaX (B+Zam) +ZO(ﬁ7T\E (8.46)
2
() T me
with
RME(T) = |1-3 TT (B+Zm)+zamﬁ 1 . (8.47)

Finally, in a similar way the MDCS (Eq.(8.38)) is

do_Mott (T) do.Rut M
— R ott T
dT dT ()

22\ TTmax i
:(pﬁc) o ot ()

with RMet(T") from Eq.(8.50).
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Interpolated Expression for RMott
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Fig. 8.4: RMtt obtained from Eq.(8.48) at 100 MeV for Li, Si, Fe and Pb nuclei as a function of scattering angle.

Recently, Lijian, Quing and Zhengming [LLQZ95] provided a practical interpolated expression (Eq.(8.48)) which is a
function of both 6 and § for electron energies from several keV up to 900 MeV, i.e.,

4
RMott — Z ai(Z, B8)(1 — cos 9)j/2, (8.48)
i=0
where
6 pa—
ai(2,8) = bj(2)(B—B), (8.49)
k=1

and B¢ = 0.7181287 c is the mean velocity of electrons within the above mentioned energy range. The coefficients
bij(Z) are listed in Table 1 of Ref. [LQZ95] for 1 < Z < 90. Boschini et al. (2013) [eall3] provided an extended
numerical solution for the Mott differential cross section on nuclei up to Z = 118 for both electrons and positrons.
RMott gbtained from Eq.(8.48) at 100 MeV is shown in Fig. 8.4 for Li, Si, Fe and Pb nuclei as a function of scattering
angle. Furthermore, it has to be remarked that the energy dependence of RM°* from Eq.(8.48) was studied and
observed to be negligible above ~ 10 MeV (for instance, see Eq.(8.49)).

Finally, from Egs.(8.41), (8.48) (see also Equation (1.93) at page 31 of Ref.[LR11]), one finds that RM°* can be
expressed in terms of the transferred energy 7" as

Mott 2T 72
RMO™(T) = Zaj(Z, 3) (T -) - (8.50)

4
=0
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Screened Coulomb Potentials

The simple scattering model due to Wentzel with a single exponential screening function (see Eq. (2.71) of Ref.
[LR11]) was repeatedly employed in treating single and multiple Coulomb scattering with screened potentials. Ne-
glecting effects like those related to spin and finite size of nuclei, for proton and nucleus interactions on nuclei it was
shown that the resulting elastic differential cross section of a projectile with bare nuclear-charge ez on a target with
bare nuclear-charge eZ differs from the Rutherford differential cross section (RDCS) by an additional term, the screen-
ing parameter, which prevents the divergence of the cross section when the angle 6 of scattered particles approaches
0° (see Section 1.6.1 of Ref. [LR11]). For z = 1 particles the screening parameter A i is expressed as

5 2
As. =
M (2]9 aTF)

where a, ¢ and h are the fine-structure constant, speed of light and reduced Planck constant, respectively; p (G¢) is the
momentum (velocity) of the incoming particle undergoing the scattering onto a target supposed to be initially at rest,
i.e., in the laboratory system; arr is the screening length suggested by Thomas—Fermi

B

2
1.13 4+ 3.76 x (OZ> ] (8.51)

_ Crrag
aTF = 7173
with
h2
an = ——
07 me?

the Bohr radius, m the electron rest mass and

1/37\%?
=—(— ~ 0. 4
Crw 5 < 1 ) 0.8853

a constant introduced in the Thomas—Fermi model (see Ref. [ealll], Eq.(2.73, 2,82) of Ref. [LR11], and refer-
ences therein). The modified Rutherford’s formula do"V™(6)/dS?, i.e., the differential cross section obtained from the
Wentzel-Moliere treatment of the single scattering on screened nuclear potential is given by (see Eq.(2.84) of Ref.
[LR11] and Ref. [eall1], and references therein):

oM () _ <zze2 >2 . 1

a0 2 p]j f’c v +sin2(6/2)]” (8.52)
d u
- ZQ 32(0).
with
)
3(0) = — S (0/2) (8.53)

Asm + sin?(0/2)°

§(0), the screening factor, depends on the scattering angle 6 and the screening parameter Ag nr. As discussed in Finite
Rest Mass of Target Nucleus, the term Ag p (the screening parameter) cannot be neglected in the DCS (Eq.(8.52)) for
scattering angles (¢) within a forward (with respect to the electron direction) angular region narrowing with increasing
energy from several degrees (for high-Z material) at 200 keV down to less than or much less than a mrad above 200
MeV.

An approximated description of elastic interactions of electrons with screened Coulomb fields of nuclei can be obtained
by the factorization of the MDCS, i.e., involving Rutherford’s formula do " /d() for particle with z = 1, the screening
factor F(6) and the ratio RM°* between the RDCS and MDCS:

Mott Rut
dosch (0) ~ djm 32(0) RMott, (8.54)
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Thus, the corresponding screened differential cross section derived using the analytical expression from McKinley and
Feshbach [MF48] can be approximated with

doMeF () N doRut
ds? o dQ
Zeitler and Olsen [Z064] suggested that for electron energies above 200 keV the overlap of spin and screening effects

is small for all elements and for all energies; for lower energies the overlapping of the spin and screening effects may
be appreciable for heavy elements and large angles.

Finite Nuclear Size

The ratio between the actual measured and that expected from the point-like differential cross section expresses the
square of nuclear form factor | F| which, in turn, depends on the momentum transfer ¢, i.e., that acquired by the target
initially at rest:

2
g= YIT+2Me) (8.56)

c
with T from Eq.(8.41) or for M¢? larger or much larger than the electron energy from its approximate expression
Eq.(8.43).

The approximated (factorized) differential cross section for elastic interactions of electrons with screened Coulomb
fields of nuclei (Eq.(8.54)) accounting for the effects due to the finite nuclear size is given by:
ddi\g:}t‘t (9) do’RUt

S = g 860 RN F(g) @57

Thus, using the analytical expression derived by [MF48] (Eq.(8.39)) one obtains that the corresponding screened
differential cross section (Eq.(8.55)) accounting for the finite nuclear size effects

AoNE(0) ot

F2(0) RN |F(g)”

aQ dQ
doRut (8.58)
= F0)1F ()
x {1-p%sin?(0/2) + Z afrsin(0/2) [1 — sin(6/2)]} .
In terms of kinetic energy, one can respectively rewrite Eqgs.(8.57), (8.58) as

dUi,\éIOtt (T) da'Rut .
S = e BT RYMNT) (F(g) 55)

dog s (T) _ do® (T) 2 McF 2 .
S ) ) RYF(1) (R ()

with do®4 /dT from Eq.(8.46), RM°"(T) from Eq.(8.50), RMF(T) from Eq.(8.47) and, using Eqs.(8.41), (8.43),
(8.53),

T
T=—+———.
S( ) TmaxAs,M + T
For instance, the form factor Feyy, is
1 rgraN?] "
Fo(q) = |1+ = (7) : 8.60
o) = 14 35 (%2)'] (8.60)
where r;, is the nuclear radius, 7, can be parameterized by
ry = 1.27A%%7 fm (8.61)

with A the atomic weight. Equation (8.61) provides values of 7, in agreement up to heavy nuclei (like Pb and U) with
those available, for instance, in Table 1 of Ref. [VJV87].
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Finite Rest Mass of Target Nucleus

The DCS treated in Scattering Cross Section of Electrons on Nuclei to Finite Nuclear Size is based on the extension of
MDCS to include effects due to interactions on screened Coulomb potentials of nuclei and their finite size. However,
the electron energies were considered small (or much smaller) with respect to that (M c?) corresponding to rest mass
(M) target nuclei.

The Rutherford scattering on screened Coulomb fields, i.e., under the action of a central forces, by massive charged
particles at energies large or much larger than M c? was treated by Boschini et al. [eall1] in the CoM system (see also
Sections 1.6, 1.6.1, 2.1.4.2 of Ref. [LR11] and references therein). It was shown that the differential cross section
(do"WM(6')/dSY with ¢ the scattering angle in the CoM system) is that one derived for describing the interaction on
a fixed scattering center of a particle with

* momentum p/, equal to the momentum of the incoming particle (i.e., the electron in the present treatment) in the
CoM system

* rest mass equal to the relativistic reduced mass i) (see Eqs.(1.80, 1.81) in Ref. [LR11]).
Lirel 1S given by

mM
M 2

Mrel =
B mMc
\/m202 + M?2c2 + 2 M+/m2ct + p2c?

where p is the momentum of the incoming particle (the electron in the present treatment) in the laboratory system; m
is the rest mass of the incoming particle (i.e., the electron rest mass); M; o is the invariant mass (Section 1.3.2 of Ref.
[LR11] of the two-particle system. Thus, the velocity of the interacting particle is (see Eq.(1.82) at of Ref. [LR11])

fireic)
1+(“°;1>]
Dy

For an incoming particle with z = 1, doWM(¢)/dQ)’ is given by

-1

Bic=rc

doVM () Ze? \? 1
/ - Y 2 (8.62)
d 2piBic)  [As+sin®(0/2)]
with
h 2 aZ\?
A= ——— 1.13 4+ 3.76 — 8.63
; <2P£CLTF> i X(ﬁé) ] (#69
the screening factor (see Eqs.(2.87, 2.88) of Ref. [LR11]). Eq.(8.62) can be rewritten as
dUWM’ (9/) do.Rut/(el) )
a  d Som () (8.64)
with
Rut’ (p/ 2 2
do™"t (9") _ ( Ze ) 41 (8.65)
asy 2pBlc) sin*(0'/2)
the corresponding RDCS for the reaction in the CoM system (see Eq.(1.79) of Ref. [LR11]] and
sin?(6' /2
Soom(0') = s (0/2) (8.66)

A +sin?(07/2)
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the screening factor. Using Eqs.(8.41) and (8.42), one can respectively rewrite Eqgs.(8.65), (8.66), (8.64), (8.62) as

Rut’ 2 2
do . Ze Tinax (8.67)
dT 'Blc) T2
T
Senl®) =7 45T (569
dUWM' (T) daRut'
- T
dT ar~ Seom(T)

doWVM'(T) <p262 >2 Thnax
_— L =7 .
T ¢) (TmaxAs +T)°

(see Eq.(2.90) of Ref.[LR11] or Eq.(13) of Ref.[eal 1 1]).

To account for the finite rest mass of target nucleus the factorized MDCS (Eq.(8.57)) has to be re-expressed in the
CoM system using as:

da;\g%tCOM(gl) do™ut’ (9/)

LM o (0) RSO IF (@), (869)

where F'(q) is the nuclear form factor (Finite Nuclear Size) with ¢, the momentum transfer to the recoil nucleus
(Eq.(8.56)); finally, as discussed in Interpolated Expression for , RM°t exhibits almost no dependence on electron
energy above ~ 10 MeV, thus, since at low energies 6 = ¢’ and 3 = 3/, R¥% (6') is obtained replacing 6 and /3, with
0" and ., respectively, in Eq.(8.48).

Using the analytical expression derived by McKinley and Feshbach [MF48], one finds that the corresponding screened
differential cross section accounting for the finite nuclear size effects (Eqs.(8.58)) can be re-expressed as
Aoy Foom(O)  doBut'(9)
dsY’ o sy’

Feom(0) REH(E) |F(@)) (8.70)
with

REG(0)) = {1-B2 sin(0' /2)+ Z Bl sin(60 /2) [L—sin(6' /2)]} . (8.71)
In terms of kinetic energy 7', from Eqs.(8.41) and (8.42), one can respectively rewrite Egs.(8.69) and (8.70) as

o Foon(T) B do™
dT - dT

§eom(T) RESH(T) |F(q)? (8.72)

Aol Feom(T) _ do™ (T
rel) o 000 S (@) REK(T) () (573

with dUR“t,/dT from Eq.(8.67), Fcom (T) from Eq.(8.68) and R¥.F (T') replacing 3 with 3, in Eq.(8.47), i.e.,

T T
T (Bi+Zarm)+Zaf,m | 7|

Finally, as discussed in Interpolated Expression for , RM°%(T') exhibits almost no dependence on electron energy

above ~ 10MeV, thus, since at low energies § = 0 and 8 = B/, RMH(T) is obtained replacing 3 with 3! in

Eq.(8.50).

REm(T) = [1-8]
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8.5.2 Nuclear Stopping Power of Electrons

5.0x10* ; : : ; : :

4.0x10* F

e 56
3.0x10*F1 S PO ]

Nuclear stopping power [MeV cm’ g'1]

20010°F N 1

10° 10"

107 10°
Kinetic Energy [MeV]
Fig. 8.5: In MeVcm?/g, nuclear stopping powers in 'Li, '2C, 28Si and *°Fe calculated from Eq.(8.75) and divided by

the density of the material as a function of the kinetic energy of electrons from 200 keV up to 1 TeV.

Using Eq.(8.72), the nuclear stopping power in MeV cm’! of Coulomb electron-nucleus interaction can be obtained
as

Mott Tmae (, Mott T
_ (dE> =, / dogeFioom(T) TdT (8.74)
daj nucl 0 dT

with n 4 the number of nuclei (atoms) per unit of volume (see Eq.(1.71) of Ref. [LR11]) and, finally, the negative sign
indicates that the energy is lost by the electron (thus, achieved by recoil targets). Using the analytical approximation
derived by McKinley and Feshbach [MF48], i.e., Eq.(8.73), for the nuclear stopping power one finds

dE\ M Tmas doME oo (T)
_ (e _ se,,CoM\” ) o 8.75
( dr )nud na /0 dT (8.75)

As already mentioned in Finite Rest Mass of Target Nucleus, the large momentum transfers corresponding to large
scattering angles are disfavored by effects due to the finite nuclear size accounted for by means of the nuclear form
factor (Finite Nuclear Size). For instance, the ratios of nuclear stopping powers of electrons in silicon are shown in
Ref. [eall2] as a function of the kinetic energies of electrons from 200 keV up to 1 TeV. These ratios are the nuclear
stopping powers calculated neglecting

¢ nuclear size effects (i.e., for |Fexp|2 =1)
« effects due to the finite rest mass of the target nucleus (i.e., in Eq.(8.75) replacing do}\% ¢\ (T)/dT with
do)lF (T')/dT from Eq. (8.59) both divided by that one obtained using Eq.(8.75).

Above a few tens of MeV, a larger stopping power is found assuming |Fexp|2 = 1 and, in addition, above a few
hundreds of MeV the stopping power largely decreases when the effects of nuclear rest mass are not accounted for.

In Fig. 8.5, the nuclear stopping powers in 'Li, '?C, 28Si and Fe are shown as a function of the kinetic energy of
electrons from 200 keV up to 1 TeV. These nuclear stopping powers are calculated from Eq.(8.75) and divided by the
density of the medium.
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8.5.3 Non-lonizing Energy-Loss of Electrons

In case of Coulomb scattering of electrons on nuclei, the non-ionizing energy loss can be calculated using (as dis-
cussed in Scattering Cross Section of Electrons on Nuclei to Nuclear Stopping Power of Electrons) the MDCRS or
its approximate expression McFDCS (e.g., Eqs.(8.72), (8.73), respectively), once the screened Coulomb fields, finite
sizes and rest masses of nuclei are accounted for, i.e., in MeV/cm

NIEL Trmaz d Mott T
_ (dE> - / 7 r(r) “2eroon) (8.76)
dx n,Mott Ta dr
or
NIEL Traz dO.McF T
- (dE) =na / T L(T) dosercond) (8.77)
du n,McF Ta dr

(see Eq.(4.113) and Sections 4.2.1-4.2.1.2 of Ref. [LRI11]), where T is the kinetic energy transferred to the target
nucleus, L(T) is the fraction of 7" deposited by means of displacement processes. The Lindhard partition function,
L(T), can be approximated using the Norgeti—Robintson—Torrens expression (see Eqs.(4.121, 4.123) of Ref. [LR11]
and references therein). Tyo = T L(T) is the damage energy, i.e., the energy deposited by a recoil nucleus with
kinetic energy T' via displacement damages inside the medium. In Eqs.(8.76) and (8.77), the integral is computed
from the minimum energy 7y, the threshold energy for displacement, i.e., that energy necessary to displace the atom
from its lattice position up to the maximum energy 7,,, that can be transferred during a single collision process. For
instance, T} is about 21 eV in silicon requiring electrons with kinetic energies above ~ 220keV. As already discussed
with respect to nuclear stopping powers in Nuclear Stopping Power of Electrons, the large momentum transfers (corre-
sponding to large scattering angles) are disfavored by effects due to the finite nuclear size accounted for by the nuclear
form factor. For instance, the ratios of NIELs for electrons in silicon are shown in Ref. [eall2] as a function of the
kinetic energy of electrons from 220 keV up to 1 TeV. These ratios are the NIELs calculated neglecting

* nuclear size effects (i.e., for |Fexp|2 =1)

» effects due to the finite rest mass of the target nucleus (i.e., in Eq.(8.77) replacing dai}ﬁflg com(T)/dT" with
daé\fflf?(T)/dT from Eq." (8.59) both divided by that one obtained using Eq.(8.77).

Above ~ 10 MeV, the NIEL is ~20% larger assuming |Fexp|2 = 1 and, in addition, above 100200 MeV the calculated
NIEL largely decreases when the effects of nuclear rest mass are not accounted for.

8.6 G4eSingleScatteringModel

The G4eSingleScatteringModel performs the single scattering interaction of electrons on nuclei. The differential
cross section (DCS) for the energy transferred is define in the G4ScreeningMottCrossSection class. In this class the
M.Boschini’s et al. [eall3] Mott differential cross Section approximation is implemented. This CDS is modified by
the introduction of the Moliere’s [Moliere48] screening coefficient. In addition the exponential charge distribution
Nuclear Form Factor is applied [BKMMO02]. This treatment is fully performed in the center of mass system and the
usual Lorentz transformations are applied to obtained the energy and momentum quantities in the laboratory system
after scattering. This model well simulates the interacting process for low scattering angles and it is suitable for high
energy electrons (from 200 keV) incident on medium light target nuclei. The nuclear energy loss (i.e. nuclear stopping
power) is calculated for every single interaction. In addition the production of secondary scattered nuclei is simulated
from a threshold kinetic energy which can be decided by the user (threshold energy for displacement).
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8.6.1 The method

In the G4eSingleScatteringModel the method ComputeCrossSectionPerAtom() performs the total cross section com-
putation. The SetupParticle() and the DefineMaterial() methods are called to defined the incident and target particles.
Before the total cross section computation, the SetupKinematic() method of the G4ScreeningMottCrossSection class
calculates all the physical quantities in the center of mass system (CM). The scattering in the CM system is equivalent
to the one of an effective particle which interacts with a fixed scattering center. The effective particle rest mass is equal
to the relativistic reduced mass of the system p whose expression is calculated by:

Mc?
EC’UL

p=m

where m and M are rest masses of the electron and of the target nuclei respectively. E.,, is the total center of mass
energy and, since the target is at rest before scattering, its expression is calculated by:

Eum = /(mc®)2 + (Mc2)2 + 2E'Mc2

where E = v'mc? is the total energy of the electron before scattering in the laboratory system. The momentum and
the scattering angle of the effective particle are equal to the corresponding quantities calculated in the center of mass
system (p = pem, 0 = O¢m) of the incident electron:

Mc?

Ecm

pe=p'c

where p’ is the momentum of the incident electron calculated in the laboratory system. The velocity of the effective
particle is related with its momentum by the following expression:

1 pc?y 2
St ()
7 e

The integration of the DCS is performed by the NuclearCrossSection() method of the G4ScreeningMottCrossSection:

0”77.(1/[)_'
Otot = 27r/ d;g) sin 6d6

Omin

The integration is performed in the scattering range [0 ;7] but the user can decide to vary the minimum (6,,,;,) and the
maximum (6,,,,,) scattering angles. The DCS is then given by:

do(0) ([ Ze? i Ruer|Fr(g)]?
a0 ne? B2 ) (24, + 2sin(0/2))?

where Z is the atomic number of the nucleus, A is the screening coefficient whose expression has been given by

Moliere [Moliere48] :
2 2
A
A, = ( h ) [1.13+3.76<O‘ ) } (8.78)
2p arr B

where a7 is the Thomas-Fermi screening length given by:

0.88534 ag
arr = W

and ag is the Bohr radius. Rj;.r is the ratio of the Mott to the Rutherford DCS given by McKinley and Feshbach
approximation [MF48]:

Rurer = |1 — B2sin?(0/2) + ZaBmsin(0/2) (1 — sin(6/2))
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The nuclear form factor for the exponential charge distribution is given by [BKMMO2]:

(qRn)?

1+

where Ry is the nuclear radius that is parameterized by:
Ry = 1.27A%?7 fm.
q is the momentum transferred to the nucleus and it is calculated as:
gc=+/T(T +2Mc?)
where T is the kinetic energy transferred to the nucleus. This kinetic energy is calculated in the GetNewDirection()

method as:

2M 20/ .\2
T = M sin2 0/2.
Ecm
The scattering angle 6 calculation is performed in the GetScatteringAngle() method of G4ScreeningMottCrossSection
class. By means of AngleDistribution() function the scattering angle is chosen randomly according to the total cross
section distribution (p.d.f. probability density function) by means of the inverse transform method.

In the SampleSecondary() method of G4eSingleScatteringModel the kinetic energy of the incident particle after scat-
tering is then calculated as E/,.,, = E’ — T where E’ is the electron incident kinetic energy (in lab.); in addition the
new particle direction and momentum are obtained from the scattering angle information.

8.6.2 Implementation Details

The scattering angle probability density function f(#) (p.d.f.) is performed by the AngleDistribution() of
G4ScreeningMottCrossSection class where the inverse transform method is applied. The normalized cumulative func-
tion of the cross section is calculated as a function of the scattering angle in this way:

4
on(0) = / F(0)do = 2" /0 dgg) sin tdt

Otot

The normalized cumulative function o,,(#) depends on the DCS and its values range in the interval [0;1]. After this
calculation a random number 7, uniformly distributed in the same interval [0;1], is chosen in order to fix the cumulative
function value (i.e. r = 0,(0)). This number is the probability to find the scattering angle in the interval [0; 6 + d].
The scattering angle 6 is then given by the inverse function of o,,(#). The threshold energy for displacement Th can
by set by the user in her/his own Physics class by adding the electromagnetic model:

G4eSingleCoulombScatteringModel* mod =
new G4eSingleCoulombScatteringModel () ;
mod->SetRecoilThreshold (Th) ;

If the energy lost by the incident particle is grater then this threshold value a new secondary particle is created for trans-
portation processes. The energy lost is added to ProposeNonlonizingEnergyDeposit(). NIEL calculation is available
in test58.
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CHAPTER
NINE

ATOMIC RELAXATION

9.1 Atomic relaxation

Atomic relaxation processes can be induced by any ionisation process that leaves the interested atom in an excited state
(i.e. with a vacancy in its electronic structure). Processes inducing atomic relaxation in GEANT4 are photoelectric
effect, Compton and ionisation (both Standard and Lowenergy).

GEANT4 uses the Livermore Evaluation Atomic Data Library EADL [PCeal], that contains data to describe the relax-
ation of atoms back to neutrality after they are ionised. It is assumed that the binding energy of all subshells (from
now on shells are the same for neutral ground state atoms as for ionised atoms [PCeal]).

Data in EADL includes the radiative and non-radiative transition probabilities for each sub-shell of each element,
for Z =1 to 100. The atom has been ionised by a process that has caused an electron to be ejected from an atom,
leaving a vacancy or “hole” in a given subshell. The EADL data are then used to calculate the complete radiative and
non-radiative spectrum of X-rays and electrons emitted as the atom relaxes back to neutrality.

Non-radiative de-excitation can occur via the Auger effect (the initial and secondary vacancies are in different shells)
or Coster-Kronig effect (transitions within the same shell).

Please see further detailed information on atomic deexcitation at http://geant4.web.cern.ch/node/1620.

9.1.1 Fluorescence

The simulation procedure for the fluorescence process is the following:

1. If the vacancy shell is not included in the data, energy equal to the binding energy of the shell is deposited
locally

2. If the vacancy subshell is included in the data, an outer subshell is randomly selected taking into account the
relative transition probabilities for all possible outer subshells.

3. In the case where the energy corresponding to the selected transition is larger than a user defined cut value (equal
to zero by default), a photon particle is created and emitted in a random direction in 47, with an energy equal to
the transition energy, provided by EADL.

4. the procedure is repeated from step 1, for the new vacancy subshell.

The final local energy deposit is the difference between the binding energy of the initial vacancy subshell and the sum
of all transition energies which were taken by fluorescence photons. The atom is assumed to be initially ionised with
an electric charge of +1e.

Sub-shell data are provided in the EADL data bank [PCeal] for Z = 1 through 100. However, transition probabilities
are only explicitly included for Z = 6 through 100, from the subshells of the K, L, M, N shells and some O subshells.
For subshells O,P,Q: transition probabilities are negligible (of the order of 0.1%) and smaller than the precision with
which they are known. Therefore, for the time being, for Z = 1 through 5, only a local energy deposit corresponding
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to the binding energy B of an electron in the ionised subshell is simulated. For subshells of the O, P, and Q shells, a
photon is emitted with that energy B.

9.1.2 Auger process

The Auger effect is complementary to fluorescence, hence the simulation process is the same as for the fluorescence,
with the exception that two random shells are selected, one for the transition electron that fills the original vacancy,
and the other for selecting the shell generating the Auger electron.

Subshell data are provided in the EADL data bank [PCeal] for Z = 6 through 100. Since in EADL no data for
elements with Z < 5 are provided, Auger effects are only considered for 5 < Z < 100 and always due to the EADL
data tables, only for those transitions which have a probability to occur > 0.1% of the total non-radiative transition
probability. EADL probability data used are, however, normalized to one for Fluorescence + Auger.

9.1.3 PIXE

PIXE (Particle Induced X-Ray Emission) can be simulated for ionisation continuous processes performed by ions.
Tonised shells are selected randomly according the ionisation cross section of each shell once known the (continuous)
energy loss along the step Mean Energy Loss.

Different shell ionisation cross sections models are available in different energy ranges:
e ECPSSR [WBrandtGLapicki81][BL79] internal GEANT4 calculation for K and L shells.

* ECPSSR calculations from Factor Form according to Reis [eall 1b] for K and L shells from 0.1 to 100 MeV and
for M shells from 0.1 to 100 MeV.

 empirical “reference” K-shell values from Paul for protons [HP89] and for alpha [HP93]. Energies ranges are
0.1 - 10 MeV/amu circa, depending on the atomic number that varies between 4 and 32.

» semi-empirical L-subshell values from Orlic [OST94]. Energy Range 0.1-10 MeV for Z between 41 and 92.
Outside Z and energy of limited shell ionisation cross sections, the ECPSSR internal calculation method is applied.

Please refer to Ref.[eall 1a] and original papers to have detailed information of every model.

9.2 Alternative models for impact ionisation by hadrons and PIXE

Early developments of proton and « particle impact ionisation cross sections in GEANT4 are reviewed in a detailed
paper devoted to PIXE simulation with GEANT4 [eal09]. This article also presents alternative developments for
PIXE simulation, their validation with respect to experimental data and the first GEANT4-based simulation involv-
ing PIXE in a concrete experimental use case: the optimization of the graded shielding of the X-ray detectors of the
eROSITA [eal07] mission. The new developments described in [eal09] are released in GEANT4 in the pii package (in
source/processes/electromagnetic/pii).

The developments for PIXE simulation described in [eal09] provide a variety of proton and « particle cross sections
for the ionisation of K, L. and M shells:

e theoretical calculations based on the ECPSSR [BL81] model and its variants (with Hartree-Slater corrections
[Lap05], with the “united atom” approximation [CipO7b] and specialized for high energies [Lap08]),

* theoretical calculations based on plane wave Born approximation (PWBA),

» empirical models based on fits to experimental data collected by Paul and Sacher [PS89] (for protons, K shell),
Paul and Bolik [PB93] (for «, K shell), Kahoul et al. [KNDOS8]) (for protons, K, shell), Miyagawa et al.
[MNMS88], Orlic et al. [OST94] and Sow et al. [SOLT93] for L shell.
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The cross section models available in GEANT4 are listed in Table 9.1.

Table 9.1: Cross Section Models in GEANT4

Particle, shell | Model | Zrange
Protons, K shell
ECPSSR 6-92
ECPSSR High Energy 6-92
ECPSSR Hartree-Slater 6-92
ECPSSR United Atom 6-92
ECPSSR reference [PS89] | 6-92
PWBA 6-92
Paul and Sacher 6-92
Kahoul et al. 6-92
Protons, L shell
ECPSSR 6-92
ECPSSR United Atom 6-92
PWBA 6-92
Miyagawa et al. 40-92
Orlic et al. 43-92
Sow et al. 43-92
Protons, M shell
ECPSSR 6-92
PWBA 6-92
«, K shell
ECPSSR 6-92
ECPSSR Hartree-Slater 6-92
ECPSSR reference [PB93] | 6-92
PWBA 6-92
«a, L and M shell
ECPSSR 6-92
PWBA 6-92

The calculation of cross sections in the course of the simulation is based on the interpolation of tabulated values, which
are collected in a data library. The tabulations corresponding to theoretical calculations span the energy range between
10 keV and 10 GeV; empirical models are tabulated consistently with the energy range of validity documented by their
authors, that corresponds to the range of the data used in the empirical fits and varies along with the atomic number
and sub-shell.

ECPSSR tabulations have been produced using the ISICS software [LC96][Cip07a], 2006 version; an extended ver-
sion, kindly provided by ISICS author S. Cipolla [Cip08], has been exploited to produce tabulations associated with
recent high energy modelling developments [Lap08].

An example of the characteristics of different cross section models is illustrated in Fig. 9.1. Fig. 9.2 shows various
cross section models for the ionisation of carbon K shell by proton, compared to experimental data reported in [PS89].

The implemented cross section models have been subject to rigorous statistical analysis to evaluate their compatibility
with experimental measurements reported in [PS89], [OSaSMT94], [SC84] and to compare the relative accuracy of
the various modelling options.

The validation process involved two stages: first goodness-of-fit analysis based on the ? test to evaluate the hypothesis
of compatibility with experimental data, then categorical analysis exploiting contingency tables to determine whether
the various modelling options differ significantly in accuracy. Contingency tables were analyzed with the x? test and
with Fisher’s exact test.

The complete set of validation results is documented in [eal09]. Only the main ones are summarized here; GEANT4
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Fig. 9.1: Cross section for the ionisation of copper K shell by proton impact according to the various implemented
modeling options: ECPSSR model, ECPSSR model with “united atom” (UA) approximation, Hartree-Slater (HS) cor-
rections and specialized for high energies (HE); plane wave Born approximation (PWBA); empirical models by Paul
and Sacher and Kahoul et al. The curves reproducing some of the model implementations can be hardly distinguished
in the plot due to their similarity.
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Fig. 9.2: Cross section for the ionisation of carbon K shell by proton impact according to the various implemented
modeling options, and comparison with experimental data [PS§89]: ECPSSR model, ECPSSR model with “united
atom” (UA) approximation, Hartree-Slater (HS) corrections and specialized for high energies (HE); plane wave Born
approximation (PWBA); empirical models by Paul and Sacher and Kahoul et al. The curves reproducing some of the
model implementations can be hardly distinguished in the plot due to their similarity.
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users interested in detailed results, like the accuracy of different cross section models for specific target elements,
should should refer to [eal09] for detailed information.

Regarding the K shell, the statistical analysis identified the ECPSSR model with Hartree-Slater correction as the
most accurate in the energy range up to approximately 10 MeV; at higher energies the ECPSSR model in its plain
formulation or the empirical Paul and Sacher one (within its range of applicability) exhibit the best performance. The
scarceness of high energy data prevents a definitive appraisal of the ECPSSR specialization for high energies.

Regarding the L shell, the ECPSSR model with “united atom” approximation exhibits the best accuracy among the
various implemented models; its compatibility with experimental measurements at 95% confidence level ranges from
approximately 90% of the test cases for the L sub-shell to approximately 65% for the L; sub-shell. According to the
results of the categorical analysis, the ECPSSR model in its original formulation can be considered an equivalently
accurate alternative. The Orlic et al. model exhibits the worst accuracy with respect to experimental data; its accuracy
is significantly different from the one of the ECPSSR model in the “united atom” variant.

The implementation of these models for the hadron impact ionisation process is included in the
G4hImpactIonisation class, which is largely based on the original G4hLowEnergyIonisation process.
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ELECTRON AND POSITRON INCIDENT

10.1 lonisation

10.1.1 Method

The G4elonisation class provides the continuous and discrete energy losses of electrons and positrons due to ionisation
in a material according to the approach described in Mean Energy Loss. The value of the maximum energy transferable
to a free electron T, is given by the following relation:

E —mc? for et
Taz = { (10.1)

(E—mc?)/2 for e~
where mc? is the electron mass. Above a given threshold energy the energy loss is simulated by the explicit production

of delta rays by Méller scattering (e~ e™), or Bhabha scattering (e™e ™). Below the threshold the soft electrons ejected

are simulated as continuous energy loss by the incident e*.

10.1.2 Continuous Energy Loss

The integration of (7.1) leads to the Berger-Seltzer formula [MC70]:

dE

dx T<Teut

1 2(y+1)
= 271'7“57’71627’161@ In W + Fi(T, Tup) — 0 (10.2)

with

7. = classical electron radius: e?/(4megmc?)
me? = mass energy of the electron
ne; = electron density in the material

I = mean excitation energy in the material

v = E/mc?
B =1-(1/7%)
T=v—-1

Tt = minimum energy cut for J-ray production
Te = Tout/mc?
Tmaz = Maximum energy transfer:7 for et T /2 fore™
Tup = min(Tw T’maw)

6 = density effect function.
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In an elemental material the electron density is

Nawp
=

Nel = L Mgt = 4

N is Avogadro’s number, p is the material density, and A is the mass of a mole. In a compound material
Napw;p
Nel = E Zi Nati = E Z; a;l_l ;
. . 1
1 1

where wj; is the proportion by mass of the i*” element, with molar mass A; .

The mean excitation energies I for all elements are taken from [eal84].

37’5y 7'5 7'3 TS TZL )
Ry (Tupgp S a seey E

2

%4’(27’4—1)111( _TTW’)]

The functions F'* are given by :

2
F(r,7up) = In(77y,) — %

- T 1
F(r7p) = =1 = B 4 [(r = mup)rip] + o+

where y = 1/(y + 1).
The density effect correction is calculated according to the formalism of Sternheimer [SP71]:

x is a kinetic variable of the particle : x = log;,(73) = In(y?3?)/4.606, and §(x) is defined by

for = <uzp: o(x)=0
for € [xg, 1]: d(z) =4.606x — C + a(xy — )™
for x>z 0(z) = 4.606x — C

where the matter-dependent constants are calculated as follows:

hv, = plasma energy of the medium = /47melr§m02 Ja = VArngrehic
C = 1+2In(I/hv)

x, = (€6/4.606

a = 4.606(xq — z0)/(x1 — o)™

m = 3.

For condensed media

forC <3.681 xz9=0.2 T =2
F<100eV ) f0r 0> 3.681 20— 0.326C — 1.0 a1 —
forC <5215 xz9=0.2 1 =3
> <
I=2100eV. ) 00> 5215 29— 0326C — 15 a1 =3
and for gaseous media
for C < 10. zo = 1.6 1 =4
for C €[10.0, 10.5] xg = 1.7 x =
for C €[10.5, 11.0] xo=1.8 =
for C€[11.0, 115  @o=19 oy =4
for C € [11.5, 12.25] xo = 2. x1 =4
for C € [12.25, 13.804] zo = 2. 21 =5
for C > 13.804 zo = 0.326C — 2.5 x1 =5.
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10.1.3 Total Cross Section per Atom and Mean Free Path

The total cross section per atom for Méller scattering (e~ e~ ) and Bhabha scattering (e*e™) is obtained by integrating
Eq. (7.2). In GEANT4 T, is always 1 keV or larger. For delta ray energies much larger than the excitation energy of
the material (7" > I), the total cross section becomes [MC70] for Méller scattering,

21r2Z [(y—1)2 /1 1 1 2v—1 1-—=x
Z,B,T = € . - 1
O'( y L7y cut) ﬁz('y 1) |: ’}/2 D) T - 1 - 72 n T s

and for Bhabha scattering (eTe™),

2mr2Z [1 (1 B: B
(2, B, Toy) = —2 [ (—1>+B11nm+B2(1—x)—;(1—:52)—%34(1—:5’)}.

(v=1) [B* \=
Here
v = E/mc? By = 2—y°
B2 = 1-(1/%) By = (1—2y)(3+y)
v = Teu/(E—mc®) By = (1-2y)2+(1-2y)3
y = 1/(v+1) By = (1-2y)°

The above formulas give the total cross section for scattering above the threshold energies

thr thr
TMoller 2T eut and TBhdbhd = Teut-

In a given material the mean free path is then

A= (g -0)"t or A= (>, nati '@)71 .

10.1.4 Simulation of Delta-ray Production
Differential Cross Section

For T > I the differential cross section per atom becomes [MC70] for Moller scattering,

do 2727 [(y—1)2% 1/1 2y-—1 1 1 2y —1
- _ e Z_ — 10.3
de 52(7—1)[ 7 +6<6 72 >+1—6(1—6 72 )] (102

and for Bhabha scattering,

do 2mriZ 1 B,
— = eZ | _ 22 4 By— Bse+ Bye?|. 104
de (y—-1) |:62€2 € 2 3¢ a€ } (1049

Here ¢ = T/(E — mc?). The kinematical limits of € are

T
60207M<6S

fore~e~ €= ——
E—me? —

N | =

Sampling

The delta ray energy is sampled according to methods discussed in Section 2. Apart from normalization, the cross
section can be factorized as

= F(gle)
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For e~e™ scattering

1 €0
9= 2175
90 = g [ -2 - oy T
9v2 — 10y +5 1—e (1—¢)2
and for eTe™ scattering
1 €0
fle) = ER -
BO — B1€ + BQ€2 — B3€3 + B464
g(€) =

- Bo — Bieg + 326(2) — B368 + B46% ’

Here By = v2/(y? — 1) and all other quantities have been defined above.
To choose ¢, and hence the delta ray energy,
1. €is sampled from f(e)
2. the rejection function g(e) is calculated using the sampled value of e
3. e is accepted with probability g(e).

After the successful sampling of e, the direction of the ejected electron is generated with respect to the direction
of the incident particle. The azimuthal angle ¢ is generated isotropically and the polar angle 6 is calculated from
energy-momentum conservation. This information is used to calculate the energy and momentum of both the scattered
incident particle and the ejected electron, and to transform them to the global coordinate system.

10.1.5 Penelope Model

The G4Penelopelonisation class calculates the continuous energy loss due to electron and positron ionisation and
simulates the d-ray production by electrons and positrons. The electron production threshold T, for a given material is
used to separate the continuous and the discrete parts of the process. The simulation of inelastic collisions of electrons
and positrons is performed on the basis of a Generalized Oscillation Strength (GOS) model (see Ref. [ealO1] for a
complete description). It is assumed that GOS splits into contributions from the different atomic electron shells.

Electrons

The total cross section o~ (E) for the inelastic collision of electrons of energy E is calculated analytically. It can be
split into contributions from distant longitudinal, distant transverse and close interactions,

0" (E) = 0disi + Odist + 0,

The contributions from distant longitudinal and transverse interactions are

2met 1 We Q7" + 2mc?
st = 3 ] ( 1 ¢ ) E—W
Odis,l mev? I Wi " QM™ Wi + 2mec? o k) (10.5)

shells
and
2met 1 1 9
Odis,t = mov? Sgl:ls kak [ln (w) - B - 5F} O(F — W) (10.6)
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respectively, where:

m. = mass of the electron;
v = velocity of the electron;
B = velocity of the electron in units of ¢;
fr = number of electrons in the k-th atomic shell;
© = Heaviside step function;
Wi, = resonance energy of the k-th atomic shell oscillator;

Q7™ = minimum kinematically allowed recoil energy for energy transfer 1},

2
= \/[\/E(E +2mec?) — /(B — Wi)(E — Wy + 2m602)} +m2ct — mec;
0 = Fermi density effect correction.

0 is computed as described in Ref. [Fan63].

The value of Wy, is calculated from the ionisation energy Uy of the k-th shell as W, = 1.65 Uy. This relation is
derived from the hydrogenic model, which is valid for the innermost shells. In this model, the shell ionisation cross
sections are only roughly approximated; nevertheless the ionisation of inner shells is a low probability process and the
approximation has a weak effect on the global transport properties'.

The integrated cross section for close collisions is the Mgller cross section

_ 2mel 1
0y = Z fe w3 F~(E,W)dw, (10.7)
shells Wi,

where

W \2 W E 2 w w2
FEW) =1 (o) - () ( )
( ) + E-W E—W+ E + m.c? E— VV—’—E2
The integral of Eq.(10.7) can be evaluated analytically. In the final state there are two indistinguishable free electrons
and the fastest one is considered as the “primary”; accordingly, the maximum allowed energy transfer in close colli-
sions is £//2. The GOS model also allows evaluation of the spectrum do~ /dW of the energy W lost by the primary
electron as the sum of distant longitudinal, distant transverse and close interaction contributions,

do~ _ dog, +d0'dis,l dodis.t (10.8)
aw — dwW aw aw

In particular,

where
Q_ = \/[\/E(E +2mec?) —\(E—W)(E—-W + 2mec2)} : +met —mec?,
dogis,t 2met 1 2
Duies _ 2ne S%ka [ (17@) —8 —§F}@(E—Wk)6(W—Wk) (10.10)
and
Dogs _ f,ff; S G F (BW)O(W — W), (10.11)
¢ hells

! In cases where inner-shell ionisation is directly observed, a more accurate description of the process should be used.
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Eqgs.(10.5), (10.6) and (10.7) derive respectively from the integration in dW of Eqs.(10.9), (10.10) and (10.11) in
the interval [0, Wipaz], where W, = E for distant interactions and W, = E/2 for close. The analytical
GOS model provides an accurate average description of inelastic collisions. However, the continuous energy loss
spectrum associated with single distant excitations of a given atomic shell is approximated as a single resonance (a §
distribution). As a consequence, the simulated energy loss spectra show unphysical narrow peaks at energy losses that
are multiples of the resonance energies. These spurious peaks are automatically smoothed out after multiple inelastic
collisions. The explicit expression of do— /dW, Eq.(10.8), allows the analytic calculation of the partial cross sections
for soft and hard ionisation events, i.e.

T. — Wnaw _
B c do B maz ]
Usoft = [) de and Uhard = /TC de

The first stage of the simulation is the selection of the active oscillator k£ and the oscillator branch (distant or close).
In distant interactions with the k-th oscillator, the energy loss W of the primary electron corresponds to the excitation
energy Wy, i.e. W=W}. If the interaction is transverse, the angular deflection of the projectile is neglected, i.e.
cos 6 = 1. For longitudinal collisions, the distribution of the recoil energy (Q is given by

srore— Q- <Q<W,
P _ ) on+q/em.e) ! max
+(Q) { 0 otherwise

Once the energy loss W and the recoil energy () have been sampled, the polar scattering angle is determined as

E(E +2m.c?) + (E - W)(E — W + 2m.c?) — Q(Q + 2m.c?)

cosf =
2/E(E +2m.c?)(E — W)(E — W + 2m.c?)

The azimuthal scattering angle ¢ is sampled uniformly in the interval (0, 27 ). For close interactions, the distributions
for the reduced energy loss k = W/ E for electrons are

P00 = [+ =~ o () (4 )]t w0l =0

with k. = max(W,T.)/E. The maximum allowed value of x is 1/2, consistent with the indistinguishability of the
electrons in the final state. After the sampling of the energy loss W = kE, the polar scattering angle 6 is obtained as

E-W E + 2m.c?

2
0= .
€08 E E—-W+2m.?

The azimuthal scattering angle ¢ is sampled uniformly in the interval (0,27). According to the GOS model, each
oscillator W}, corresponds to an atomic shell with fj, electrons and ionisation energy Uj. In the case of ionisation of
an inner shell ¢ (K or L), a secondary electron (é-ray) is emitted with energy E; = W — U, and the residual ion is left
with a vacancy in the shell (which is then filled with the emission of fluorescence x-rays and/or Auger electrons). In
the case of ionisation of outer shells, the simulated J-ray is emitted with kinetic energy Es = W and the target atom
is assumed to remain in its ground state. The polar angle of emission of the secondary electron is calculated as

WPy Q@ amet) W
QQ + 2m.) 2W (E + m.?)
(for close collisions Q = W), while the azimuthal angle is ¢s = ¢ + 7. In this model, the Doppler effects on the

angular distribution of the § rays are neglected. The stopping power due to soft interactions of electrons, which is used
for the computation of the continuous part of the process, is analytically calculated as

cos? 0 =

T _
e __do
S =N W ——dW
m /0 dW

from the expression (10.8), where N is the number of scattering centers (atoms or molecules) per unit volume.
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Positrons

The total cross section o (E) for the inelastic collision of positrons of energy F is calculated analytically. As in the
case of electrons, it can be split into contributions from distant longitudinal, distant transverse and close interactions,

YR — +
o (E) = Odis,l + Odis,t + 0,

The contributions from distant longitudinal and transverse interactions are the same as for electrons, Eq.(10.5) and
(10.6), while the integrated cross section for close collisions is the Bhabha cross section

Ucz(,: —— Z fif WFWE W)dW, (10.12)
k

where

the Bhabha factors are

”y—i—l

7+12’

s

and v is the Lorentz factor of the positron. The integral of Eq.(10.12) can be evaluated analytically. The particles in the
final state are not indistinguishable so the maximum energy transfer W, in close collisions is E. As for electrons,
the GOS model allows the evaluation of the spectrum do+ /dW of the energy W lost by the primary positron as the
sum of distant longitudinal, distant transverse and close interaction contributions,

dO’ dO‘ClO 4 do'dz‘s,l 4 dcrdis,t (10.13)
aw — dw dw dw ’
where the distant terms d‘;ﬁ;‘l and d';‘%}'[j‘t are those from Eqs.(10.9) and (10.10), while the close contribution is
doclo 2met T
T mo? > kaF (E,W)O(W — Wy).
shells

Also in this case, the explicit expression of do™ /dW, Eq.(10.13), allows an analytic calculation of the partial cross
sections for soft and hard ionisation events, i.€.

do™ Edot
ot . = / ——dW and o / ——dW.
soft 0 AW hard — T, AW

The sampling of the final state in the case of distant interactions (transverse or longitudinal) is performed in the same
way as for primary electrons, see Electrons. For close positron interactions with the k-th oscillator, the distribution for
the reduced energy loss kK = W/E is

1 by

Pr(k) = Pl — + by — by + bak }@(H—K/c)@(l—/ﬁl)

with k. = max(Wy, T.)/E. In this case, the maximum allowed reduced energy loss & is 1. After sampling the energy
loss W = kFE, the polar angle # and the azimuthal angle ¢ are obtained using the equations introduced for electrons
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in Electrons. Similarly, the generation of J rays is performed in the same way as for electrons. Finally, the stopping
power due to soft interactions of positrons, which is used for the computation of the continuous part of the process, is
analytically calculated as

N/ W—dW

from the expression (10.13), where N is the number of scattering centers per unit volume.

10.1.6 Livermore Model

The class G4LivermorelonisationModel calculates the continuous energy loss due to electron ionisation and simulates
d-ray production by electrons. The §-electron production threshold for a given material, T, is used to separate the
continuous and the discrete parts of the process. The energy loss of an electron with the incident energy, 7', is expressed
via the sum over all atomic shells, s, and the integral over the energy, ¢, of J-electrons:

dE fle o tdeqr
S T)20dev —dr
de Z ( ( ) ma:L do dt )

eV dt

where 1,0, = 0.57 is the maximum energy transferred to a J-electron, o4(T") is the total cross-section for the shell,
s, at a given incident kinetic energy, 7', and 0.1 eV is the low energy limit of the EEDL data. The -electron production
cross-section is a complementary function:

=% ( np dt>
o = =
Jovey Gt

The partial sub-shell cross-sections, o, are obtained from an interpolation of the evaluated cross-section data in the
EEDL library [STPerkins89], according to the formula (5.1) in Generic Calculation of Total Cross Sections.

The probability of emission of a §-electron with kinetic energy, ¢, from a sub-shell, s, of binding energy, Bs, as the
result of the interaction of an incoming electron with kinetic energy, T, is described by:
do  P(x) t+ Bs

47 _ ith o =
dt g2 VM TT R

where the parameter x is varied from z,,;, = (0.1eV + B;)/(T + B;) to 0.5. The function, P(x), is parametrised
differently in 3 regions of z: from x,,;, to x; the linear interpolation with linear scale of 4 points is used; from x
to xo the linear interpolation with logarithmic scale of 16 points is used; from x5 to 0.5 the following interpolation is
applied:

2
P(w)=1—ga:+(1—9)w2+1giz<

— —g) + A% (0.5 —x)/x, (10.14)

where A is a fit coefficient, g is expressed via the gamma factor of the incoming electron:

g=02y-1)/* (10.15)

For the high energy case (x > 1) the formula ((10.14)) is transformed to the Moller electron-electron scattering
formula [eal93][MC70].

The value of the coefficient, A, for each element is obtained as a result of the fit on the spectrum from the EEDL
data for those energies which are available in the database. The values of x; and x5 are chosen for each atomic shell
according to the spectrum of §-electrons in this shell. Note that 1 corresponds to the maximum of the spectrum, if the
maximum does not coincide with x,,;,. The dependence of all 24 parameters on the incident energy, 7', is evaluated
from a logarithmic interpolation (5.1).
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The sampling of the final state proceeds in three steps. First a shell is randomly selected, then the energy of the
d-electron is sampled, finally the angle of emission of the scattered electron and of the J-ray is determined by energy-
momentum conservation taken into account electron motion on the atomic orbit.

The interaction leaves the atom in an excited state. The deexcitation of the atom is simulated as described in Aromic
relaxation. Sampling of the excitations is carried out for both the continuous and the discrete parts of the process.

10.2 Bremsstrahlung

The class G4eBremsstrahlung provides the energy loss of electrons and positrons due to the radiation of photons in
the field of a nucleus according to the approach described in Mean Energy Loss. Above a given threshold energy the
energy loss is simulated by the explicit production of photons. Below the threshold the emission of soft photons is
treated as a continuous energy loss.

Below electron/positron energies of 1 GeV, the cross section evaluation is based on a dedicated parameterization,
above this limit an analytic cross section is used. In GEANT4 the Landau-Pomeranchuk-Migdal effect has also been
implemented.

10.2.1 Seltzer-Berger bremsstrahlung model

In order to improve accuracy of the model described above a new model G4SeltzerBergerModel have been design
which implementing cross section based on interpolation of published tables [SB85][SB86]. Single-differential cross
section can be written as a sum of a contribution of bremsstrahlung produced in the field of the screened atomic nucleus
do,, /dk, and the part Z do. /dk corresponding to bremsstrahlung produced in the field of the Z atomic electrons,

do _do, |, do
dk — dk dk -

The differential cross section depends on the energy & of the emitted photon, the kinetic energy 7 of the incident
electron and the atomic number Z of the target atom.

Seltzer and Berger have published extensive tables for the differential cross section do,/dk and do./dk
[SB85][SB86], covering electron energies from 1 keV up to 10 GeV, substantially extending previous publications
[eal77]. The results are in good agreement with experimental data, and provided also the basis of bremsstrahlung
implementations in many Monte Carlo programs (e.g. Penelope, EGS). The estimated uncertainties for do /dk are:

* 3% to 5% in the high energy region (17 > 50 MeV),
* 5% to 10% in the intermediate energy region (2 > 77 < 50 MeV),
* and 10% at low energies region compared with Pratt results. (7} < 2 MeV).

The restricted cross section (7.2) and the energy loss (7.3) are obtained by numerical integration performed at initiali-
sation stage of GEANT4. This method guarantees consistent description independent of the energy cutoff. The current
version uses an interpolation in tables for 52 available electron energy points versus 31 photon energy points, and for
atomic number Z ranging from 1 to 99. It is the default bremsstrahlung model in GEANT4 since version 9.5. Fig.
10.1 shows a comparison of the total bremsstrahlung cross sections with the previous implementation, and with the
relativistic model.

After the successful sampling of ¢, the polar angles of the radiated photon are generated with respect to the parent
electron’s momentum. It is difficult to find simple formulae for this angle in the literature. For example the double
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Fig. 10.1: Total cross section comparison between models for Z = 29: Parametrized Bremsstrahlung Model, Relativis-
tic Model, Bremsstrahlung Model (GEANT4 9.4) and Seltzer-Berger Model. The discontinuities in the Paramretized
Model and the Relativistic Model at 1 Mev and 1 GeV, respectively, mark the validity range of these models.

differential cross section reported by Tsai [Tsa74][Tsa77] is

do  20%€? 2¢ — 2 12u2(1 — ¢)
dkdQ — mwkm* | [ (1 + u2)2 (1+u2)?
|:2—2€—62 4u?(1 —¢)
+

— _ 2 aZ)?
(1 +u?)? (1+u2)4} X =22 l(o2) ﬂ}

}Z(ZH)

Ef
u=—
m
m?2(14u?)? . ) t — tomin
X = / (G50 + G () T an
tmin

G (t) : atomic form factors

b Em?2(1 + u?) 2 ~ [em?(1+u?) ?
™t 2B(E—k) | | 2E(1—¢)
The sampling of this distribution is complicated. It is also only an approximation to within a few percent, due at least
to the presence of the atomic form factors. The angular dependence is contained in the variable v = Efm~!. For a

given value of « the dependence of the shape of the function on Z, F and € = k/E is very weak. Thus, the distribution
can be approximated by a function

flu) =C (ue™ ™ + due™3")

where

9a?
C:
9+d

a = 0.625 d=27

where F is in GeV. While this approximation is good at high energies, it becomes less accurate around a few MeV.
However in that region the ionisation losses dominate over the radiative losses. The sampling of the function f(u) can
be done with three random numbers r;, uniformly distributed on the interval [0,1]:
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1. choose between ue~ " and due3%%:

bl @ if M <9/(9+4d)
| 3a if r1>9/(94+d)

2. sample ue "%

3. check that:

otherwise go back to 1.

The probability of failing the last test is reported in Table 10.1.

Table 10.1: Probability of failing test.

E MeV) | P(%)
0511 34
0.6 22
0.8 12
1.0 0.7
2.0 <0.1

The function f(u) can also be used to describe the angular distribution of the photon in y bremsstrahlung and to
describe the angular distribution in photon pair production. The azimuthal angle ¢ is generated isotropically. Along
with 6, this information is used to calculate the momentum vectors of the radiated photon and parent recoiled electron,
and to transform them to the global coordinate system. The momentum transfer to the atomic nucleus is neglected.

10.2.2 Bremsstrahlung of high-energy electrons

Above an electron energy of 1 GeV an analytic differential cross section representation is used [Per94], which was
modified to account for the density effect and the Landau-Pomeranchuk-Migdal (LPM) effect [Kle99][eal82].

Relativistic Bremsstrahlung cross section

The basis of the implementation is the well known high energy limit of the Bremsstrahlung process [Per94],

22+ Z
3

do dar?

Z == {2+ 200+ (1 =) HZ2(For — f) + ZFme] + (1 — 1)

(10.16)

The elastic from factor F,; and inelastic form factor Fj,.;, describe the scattering on the nucleus and on the shell
electrons, respectively, and for Z > 4 are given by [eal08]

184.15
F, =1
el Og( Z% )

1194.
Finer :log( Zg > .

3
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This corresponds to the complete screening approximation. The Coulomb correction is defined as [ealO8]

f=a%22 i 1
—in(n®+a?2?)

This approach provides an analytic differential cross section for an efficient evaluation in a Monte Carlo computer
code. Note that in this approximation the differential cross section do/dk is independent of the energy of the initial
electron and is also valid for positrons.

The total integrated cross section [ do/dk dk is divergent, but the energy loss integral [ kdo/dk dk is finite. This
allows the usual separation into continuous energy loss, and discrete photon production according to Egs. (7.3) and
(7.2).

Landau Pomeranchuk Migdal (LPM) effect

At higher energies matter effects become more and more important. In GEANT4 the two leading matter effects,
the LPM effect and the dielectric suppression (or Ter-Mikaelian effect), are considered. The analytic cross section
representation, (10.16), provides the basis for the incorporation of these matter effects.

The LPM effect (see for example [GG64][eal97][eal04]) is the suppression of photon production due to the multiple
scattering of the electron. If an electron undergoes multiple scattering while traversing the so called “formation
zone”, the bremsstrahlung amplitudes from before and after the scattering can interfere, reducing the probability
of bremsstrahlung photon emission (a similar suppression occurs for pair production). The suppression becomes
significant for photon energies below a certain value, given by

k < E
E "~ Erpm’

where

k photon energy
E electron energy
FErpyn  characteristic energy for LPM effect (depend on the medium).

The value of the LPM characteristic energy can be written as

2
am”Xo (10.17)
4he

Erpym =

where

o fine structure constant

m  electron mass

X radiation length in the material
Planck constant

c velocity of light in vacuum.

At high energies (approximately above 1 GeV) the differential cross section including the Landau-Pomeranchuk-
Migdal effect, can be expressed using an evaluation based on [Mig56][eal82][KI1e99]

do  dor? 2 911 4+ (1 2
do _dor {g@{y () + 21 + (1 — )2]6(s)}
Sy (10.18)
X[Z3(Fo — f) + ZEpa] + (1 —y) 3 }

where LPM suppression functions are defined by [Mig56]
G(s) = 245> E,/ —sr SIS
() y (2 0 ¢ sinh(%)
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and

B(s) = 125> <_72r + /000 e~ sin(st) sinh(%) dt)

They can be piecewise approximated with simple analytic functions, see e.g. [eal82]. The suppression function &(s)
is recursively defined via

k Erpm
8E(E — k)&(s)

S =

but can be well approximated using an algorithm introduced by [eal82]. The material dependent characteristic energy
FE1py is defined in Eq.(10.17) according to [eal97]. Note that this definition differs from other definition (e.g. [K1e99])
by a factor %
An additional multiplicative factor governs the dielectric suppression effect (Ter-Mikaelian effect) [TER54].
k?
S(k) = 5——
(k) k2 + k2

The characteristic photon energy scale k,, is given by the plasma frequency of the media, defined as

E, hE, nee?
kp = hw, 5 = 5 .
mec MeC €0Me

Both suppression effects, dielectric suppression and LPM effect, reduce the effective formation length of the photon,
so the suppressions do not simply multiply. A consistent treatment of the overlap region, where both suppression
mechanism, was suggested by [TM72]. The algorithm guaranties that the LPM suppression is turned off as the density
effect becomes important. This is achieved by defining a modified suppression variable § via

k2
§:s-<1+k’;)

and using § in the LPM suppression functions G(s) and ¢(s) instead of s in Eq.(10.18).

10.2.3 Penelope Model

Introduction

The class G4PenelopeBremsstrahlung calculates the continuous energy loss due to soft v emission and simulates the
photon production by electrons and positrons. As usual, the gamma production threshold 7. for a given material is
used to separate the continuous and the discrete parts of the process.

Electrons

The total cross sections are calculated from the data [STPerkins89], as described in Generic Calculation of Total Cross
do_

Sections and Livermore Model. The energy distribution 4% (E), i.e. the probability of the emission of a photon with
energy W given an incident electron of kinetic energy F, is generated according to the formula
d F W
Ty = (k) s

W()in’ E

The functions F'(x) describing the energy spectra of the outgoing photons are taken from Ref.[SB86]. For each
element Z from 1 to 92, 32 points in &, ranging from 1072 to 1, are used for the linear interpolation of this function.
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F (k) is normalized using the condition F'(10~'2) = 1. The energy distribution of the emitted photons is available in
the library [SB86] for 57 energies of the incident electron between 1 keV and 100 GeV. For other primary energies,
logarithmic interpolation is used to obtain the values of the function F'(k). The direction of the emitted bremsstrahlung
photon is determined by the polar angle 6 and the azimuthal angle ¢. For isotropic media, with randomly oriented
atoms, the bremsstrahlung differential cross section is independent of ¢ and can be expressed as

o do

TWdeosd = aw P& E, kicosd).

Numerical values of the “shape function” p(Z, F, «; cos #), calculated by partial-wave methods, have been published
in Ref. [KQPS83] for the following benchmark cases: Z= 2, 8, 13, 47, 79 and 92; E=1, 5, 10, 50, 100 and 500 keV;
k=10, 0.6, 0.8 and 0.95. It was found in Ref. [eal01] that the benchmark partial-wave shape function of Ref. [KQP83]
can be closely approximated by the analytical form (obtained in the Lorentz-dipole approximation)

— B _ g - -5
plcosd) = A% [1 + (16(182%059)2} (1 —16’06089)2 +(1- A)% [1 a (%m)? (1_15/5059)2’

with 8 = B(1 + B), if one considers A and B as adjustable parameters. The parameters A and B have been
determined, by least squares fitting, for the 144 combinations of atomic numbers, electron energies and reduced
photon energies corresponding to the benchmark shape functions tabulated in [KQP83]. The quantities In(AZ3) and
B vary smoothly with Z, 8 and « and can be obtained by cubic spline interpolation of their values for the benchmark
cases. This permits the fast evaluation of the shape function p(Z, E, k; cos @) for any combination of Z, 5 and «. The
stopping power dE/dx due to soft bremsstrahlung is calculated by interpolating in E and x the numerical data of
scaled cross sections of Ref. [BS82]. The energy and the direction of the outgoing electron are determined by using
energy-momentum balance.

Positrons

The radiative differential cross section do™ (E) /dW for positrons reduces to that for electrons in the high-energy limit,
but is smaller for intermediate and low energies. Owing to the lack of more accurate calculations, the differential cross
section for positrons is obtained by multiplying the electron differential cross section do— (E)/dW by a k-independent
factor, i.e.

dot do~
—— =F,(Z,F)——.
dWw »(Z, )dW

The factor F,,(Z, E) is set equal to the ratio of the radiative stopping powers for positrons and electrons, which has
been calculated in Ref.[eal86]. For the actual calculation, the following analytical approximation is used:
Fy(Z,E) =1 — exp(—1.2359 - 10~ + 6.1274 - 10~ 2% — 3.1516 - 10~ 2¢3
+7.7446 - 1073¢* — 1.0595 - 107> + 7.0568 - 10~°¢5 — 1.8080 - 10~%¢7),

where

t:ln(1+@i).

72 mec?

Because the factor F,(Z, E) is independent on x, the energy distribution of the secondary ~’s has the same shape as
electron bremsstrahlung. Similarly, owing to the lack of numerical data for positrons, it is assumed that the shape of
the angular distribution p(Z, E, k; cos 0) of the bremsstrahlung photons for positrons is the same as for the electrons.
The energy and direction of the outgoing positron are determined from energy-momentum balance.
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10.2.4 Livermore Model

The class G4LivermoreBremsstrahlungModel calculates the continuous energy loss due to low energy gamma emission
and simulates the gamma production by electrons. The gamma production threshold for a given material w, is used to
separate the continuous and the discrete parts of the process. The energy loss of an electron with the incident energy
T are expressed via the integrand over energy of the gammas:

dE We 14
-~ T 0.1eV ~dw
e o(T)= 75—

T do ’
Joaev 54w

where o (T') is the total cross-section at a given incident kinetic energy, 7', 0.1 eV is the low energy limit of the EEDL
data. The production cross-section is a complementary function:

fT do g

we dw
T do ’
fO.leV 0 dw
The total cross-section, o, is obtained from an interpolation of the evaluated cross-section data in the EEDL library
[STPerkins&9].

o=0o(T)

The EEDL data [eal99] of total cross-sections are parametrised [STPerkins89] according to (5.1). The probability of
the emission of a photon with energy, w, considering an electron of incident kinetic energy, T, is generated according
to the formula:

do  F(x) w

f _ ith = = =
dw x o WL T = op

The function, F'(x), describing energy spectra of the outgoing photons is taken from the EEDL library. For each
element 15 points in x from 0.01 to 1 are used for the linear interpolation of this function. The function F' is normalised
by the condition F'(0.01) = 1. The energy distributions of the emitted photons available in the EEDL library are for
only a few incident electron energies (about 10 energy points between 10 eV and 100 GeV). For other energies a
logarithmic interpolation formula (5.1) is used to obtain values for the function, F'(x). For high energies, the spectral
function is very close to:

F(x) =1—x+0.752%

Bremsstrahlung angular distributions

The angular distribution of the emitted photons with respect to the incident electron can be sampled according
to three alternative generators described below. The direction of the outgoing electron is determined from the
energy-momentum balance. This generators are currently implemented in G4ModifiedTsai, G4Generator2BS and
G4Generator2BN classes.

G4ModifiedTsai

The angular distribution of the emitted photons is obtained from a simplified [eal93] formula based on the Tsai cross-
section [Tsa74][Tsa77], which is expected to become isotropic in the low energy limit.
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G4Generator2BS

In G4Generator2BS generator, the angular distribution of the emitted photons is obtained from the 2BS Koch and
Motz bremsstrahlung double differential cross-section [KMS59]:

. 4272 dk { 1642 E (Eo + E)? E2 + E? L2 E
Ok,0 = 7.
( (

- - In M
37 kYN 0B [P PE (P 1)4Eo] ! (y)}

where k the photon energy, 6 the emission angle, E and E are the initial and final electron energy in units of m.c?,
ro is the classical electron radius and Z the atomic number of the material. y and M (y) are defined as:

y:E09

vy~ (mm5) * ()

The adopted sampling algorithm is based on the sampling scheme developed by A. F. Bielajew et al. [AFBC89], and
later implemented in EGS4. In this sampling algorithm only the angular part of 2BS is used, with the emitted photon
energy, k, determined by GEANT4 do /dk) differential cross-section.

2

G4Generator2BN

The angular distribution of the emitted photons is obtained from the 2BN Koch and Motz bremsstrahlung double
differential cross-section [KIM59] that can be written as:

Z2r2 dk p 8sin® A(2E3 + 1)
s Al
Po P20
2(5E3 +2EF+3) 26 —k*)  4E L
P2A2 Q*Ao  p3Ao  ppo
{4E0 sin? 0(3k — piE)  4E2(E2 + E?)
pgAl PpA;
2 —2(TE2 —3EEy + E?)  2k(E%+ EE, — 1)}
22 + 2
JTAY oo

4e ? 4 6k  2k(p3 — k?)
B (pA0> - (p@) {A% A QA ]}

EEy — 1+ ppo
L=hh|———""
EEs —1—ppo
Ag = Ey — pg cos b
Q% = p2 + k* — 2pgk cos

€e=1In {E—!—p] ¢ =1n [Q-l—p}

in which:

E-p Q-p

where k is the photon energy, 6 the emission angle and (Fy,po) and (E, p) are the total (energy, momentum) of the

electron before and after the radiative emission, all in units of m.c2.

Since the 2BN cross—section is a 2-dimensional non-factorized distribution an acceptance-rejection technique was the
adopted. For the 2BN distribution, two functions g; (k) and g2(6) were defined:

0

__1.—b _
q1(k) =k 92(0) = 7 s
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such that:

do

> 7
Agi(k)92(0) 2

where A is a global constant to be completed. Both functions have an analytical integral G and an analytical inverse
G~L. The b parameter of g; (k) was empirically tuned and set to 1.2. For positive @ values, g»(6) has a maximum at
1/ \ﬂc) ¢ parameter controls the function global shape and it was used to tune g2 () according to the electron kinetic
energy.

To generate photon energy k according to ¢g; and 6 according to g the inverse-transform method was used. The
integration of these functions gives

kmaa 1-b 1-b

max k _ k N

G =0 / Kk = Oy ————mn
k 1-9b

min

—d
1+ ch? 2¢c

where C and C'; are two global constants chosen to normalize the integral in the overall range to the unit. The photon
momentum k will range from a minimum cut value k,,;, (required to avoid infrared divergence) to a maximum value
equal to the electron kinetic energy Fj, while the polar angle ranges from 0 to 7, resulting for C; and Cs:

0 / 1 1 2
G :C’g/ =, 8T )
0

1-5 2c
O =-—— Cp=—
! E7 > log(1 + cn?)

k and 0 are then sampled according to:

1-5
_ pl-b
where &; and &5 are uniformly sampled in the interval (0,1). The event is accepted if:

do

< -
uAgy(k)g2(0) < Thdd

where u is a random number with uniform distribution in (0,1). The A and ¢ parameters were computed in a logarithmic
grid, ranging from 1 keV to 1.5 MeV with 100 points per decade. Since the go(6) function has a maximum at 6 = %,

the ¢ parameter was computed using the relation ¢ = % At the point (kyuin, Omaz) Where ki, is the k cut value,

the double differential cross-section has its maximum value, since it is monotonically decreasing in k£ and thus the
global normalization parameter A is estimated from the relation:

d’c
Agl(kmin)g2(9maa:) - (dkdﬂ)

—b
where g1 (kmin)9g2(Omaz) = ’;"\L/g . Since A and ¢ can only be retrieved for a fixed number of electron kinetic energies
d*o

there exists the possibility that Agy (kmin )92 (Omaz) < <m> for a given E,. This is a small violation that can
max

be corrected introducing an additional multiplicative factor to the A parameter, which was empirically determined to
be 1.04 for the entire energy range.

10.2. Bremsstrahlung 137



Physics Reference Manual, Release 10.7

Comparisons between Tsai, 2BS and 2BN generators

The currently available generators can be used according to the user required precision and timing requirements.
Regarding the energy range, validation results indicate that for lower energies (< 100 keV) there is a significant
deviation on the most probable emission angle between Tsai/2BS generators and the 2BN generator - Fig. 10.2 to
Fig. 10.4. The 2BN generator maintains however a good agreement with Kissel data [LKP83], derived from the work
of Tseng and co-workers [HKTL79], and it should be used for energies between 1 keV and 100 keV [ea03]. As the
electron kinetic energy increases, the different distributions tend to overlap and all generators present a good agreement
with Kissel data.

Fig. 10.2: Comparison of polar angle distribution of bremsstrahlung photons (k/T = 0.5) for 10 keV electrons in
silver, obtained with Tsai, 2BS and 2BN generator

Fig. 10.3: Comparison of polar angle distribution of bremsstrahlung photons (k/T" = 0.5) for 100 keV electrons in
silver, obtained with Tsai, 2BS and 2BN generator

In Fig. 10.5 the sampling efficiency for the different generators are presented. The sampling generation efficiency
was defined as the ratio between the number of generated events and the total number of trials. As energies increases
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Fig. 10.4: Comparison of polar angle distribution of bremsstrahlung photons (k/T" = 0.5) for 500 keV electrons in
silver, obtained with Tsai, 2BS and 2BN generator

the sampling efficiency of the 2BN algorithm decreases from 0.65 at 1 keV electron kinetic energy down to almost
0.35 at 1 MeV. For energies up to 10 keV the 2BN sampling efficiency is superior or equivalent to the one of the
2BS generator. These results are an indication that precision simulation of low energy bremsstrahlung can be obtained
with little performance degradation. For energies above 500 keV, Tsai generator can be used, retaining a good physics
accuracy and a sampling efficiency superior to the 2BS generator.

Fig. 10.5: Sampling efficiency for Tsai generator, 2BS and 2BN Koch and Motz generators.
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10.3 Positron - Electron Annihilation

10.3.1 Introduction

The process G4eplusAnnihilation simulates the in-flight annihilation of a positron with an atomic electron. As is
usually done in shower programs [NHR85], it is assumed here that the atomic electron is initially free and at rest. Also,
annihilation processes producing one, or three or more, photons are ignored because these processes are negligible
compared to the annihilation into two photons [NHR85][MC70].

10.3.2 Cross Section

The annihilation in flight of a positron and electron is described by the cross section formula of Heitler
[Hei54][NHRS85]:

Zrr? |2 +4y+1 v+ 3
Z,E) = ¢ 1( \/271)77
o(Z,E) ponre e kL W0} a1

where

E = total energy of the incident positron
v = E/mc?
r. = classical electron radius

10.3.3 Sampling the final state

The final state of the e + e— annihilation process

+

et e = Y

is simulated by first determining the kinematic limits of the photon energy and then sampling the photon energy
within those limits using the differential cross section. Conservation of energy-momentum is then used to determine
the directions of the final state photons.

If the incident et has a kinetic energy T, then the total energy is E, = T + mc? and the momentum is Pc =
/T(T + 2mc?). The total available energy is Ey,y = E,. + mc? = E, + E, and momentum conservation requires

P= ]3% + ]3%. The fraction of the total energy transferred to one photon (say v, ) is

I 2 O
T B  TH2me?

€

The energy transferred to v, is largest when +, is emitted in the direction of the incident e™. In that case Eomaz =
(Etor + Pc)/2 . The energy transferred to -, is smallest when -, is emitted in the opposite direction of the incident
et. Then Ey min = (Etor — Pc)/2 . Hence,

Ea,maz o 1

€max = 1+
Eio 2 [ ’Y+1]
Eamin 1 7_1
€Emin = ’ =-|1- \/ ~ 1
Etot 2 "}/+1

where v = (T + mc?)/mc? . Therefore the range of € is [€min; €maz] (= [€min ; 1 — €min))-
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10.3.4 Sampling the Gamma Energy

A short overview of the sampling method is given in Section 2. The differential cross section of the two-photon
positron-electron annihilation can be written as [Hei54][NHR85]:

do(Z,e)  Zmr? 1 27 1 1

e

N RV

where Z is the atomic number of the material, 7. the classical electron radius, and € € [€,in, ; €maz] - The differential
cross section can be decomposed as

do(Z,e)  Zmr?

= s (9
where
o = ln(emaw/emin)
1
fle) = e
_ oy ot Iy Zyeml
g(e)_{H(vH)? CESIErd A CE S VE

Given two random numbers r, " € [0, 1], the photon energies are chosen as follows:

1. sample € from f(€): € = €min (m)

€min

2. test the rejection function: if g(e) > 7’ accept ¢, otherwise return to step 1.

Then the photon energies are E, = e¢Eyy; Ey = (1—€)Eio.

Computing the Final State Kinematics

If § is the angle between the incident e and y,, then from energy-momentum conservation,

226—1} _ e+ -1

€ /2 -1~

The azimuthal angle, ¢, is generated isotropically and the photon momentum vectors, P and P%, are computed from
energy-momentum conservation and transformed into the lab coordinate system.

1
cosf = Pe [T+mc

Annihilation at Rest

The method AtRestDolt treats the special case when a positron comes to rest before annihilating. It generates two
photons, each with energy k = mc? and an isotropic angular distribution.

10.3.5 Penelope Model for positron-electron annihilation
Total Cross Section

The total cross section (per target electron) for the annihilation of a positron of energy E into two photons is evaluated
from the analytical formula [Hei54][NHR85]

2

a(E):LeQ_l) {(7 +4’y+1ln[’y+\/’y7—} 3+vﬁ}.

(v+ (v

where 7, = classical radius of the electron, and v = Lorentz factor of the positron.
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Sampling of the Final State

The target electrons are assumed to be free and at rest: binding effects, that enable one-photon annihilation [Hei54],
are neglected. When the annihilation occurs in flight, the two photons may have different energies, say £_ and E
(the photon with lower energy is denoted by the superscript “—), whose sum is E + 2m,c?. Each annihilation event
is completely characterized by the quantity

E

C:E—l—ZmecQ’

which is in the interval (pin, < ¢ < 3, with

1
Cmin: .
yH+1+72 -1

The parameter ( is sampled from the differential distribution

7'(")"2

P(¢) = W;Q_U[S(C) +S5(1 =),

where  is the Lorentz factor and

1 1
SO =-(r+1)2+ (¥ + 47+ 1)Z N
From conservation of energy and momentum, it follows that the two photons are emitted in directions with polar angles
1 1
cosf_ = 7(’y+1 — 7)
72 -1 ¢

and

1 1
cosf :7<’y+177)
* 72 —1 1-¢

that are completely determined by (; in particular, when ¢ = (45, cos_ = —1. The azimuthal angles are ¢_ and
¢+ = ¢_ + m; owing to the axial symmetry of the process, the angle ¢_ is uniformly distributed in (0, 27).

10.4 Positron Annihilation into "~ Pair in Media

The class G4AnnihiToMuPair simulates the electromagnetic production of muon pairs by the annihilation of high-
energy positrons with atomic electrons [eal06]. Details of the implementation are given below and can also be found
in Ref. [HBKO03].

10.4.1 Total Cross Section

The annihilation of positrons and target electrons producing muon pairs in the final state (ete™ — p™p™) may give
an appreciable contribution to the total number of muons produced in high-energy electromagnetic cascades. The
threshold positron energy in the laboratory system for this process with the target electron at rest is

Ey = 2m’, /me —m, ~ 43.69 GeV (10.19)

where m,, and m,, are the muon and electron masses, respectively. Taking into account that the electron is much lighter
than the muon, the lowest order cross section can be written in excellent approximation as

2
azﬂr“g(l—&—g)\/l—{, (10.20)

3
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where r,, = . me/m,, is the classical muon radius, { = Fi,/E, and F is the total positron energy in the laboratory
frame.

We take into account, that the cross section gets increased by the Sommerfeld-Schwinger-Sakharov (SSS) threshold
Coulomb re-summation factor [BL09]:

__X»
S(ﬁ) - 1— e,x(ﬁ)
where
1 — 32
KB =T = ga VP
By B
The SSS-corrected cross section can be written in good approximation at all energies above threshold as
mr? o
voss — g (14 &) mavE (10.21)
3 2) 1 e i

These expressions are used in the simulation of this process since Geant4 10.5beta. The final factor in the
expression is replaced by its asymptotic value of unity very close to threshold to avoid numerical instabilities.

G in b G in b

with SSS 0.5F

/ \
/ without

04F

“ without
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100 150 200 300 500 44.0 44.5 450 45.5

Fig. 10.6: Total cross section for the process ete™ — uu~ as a function of the positron energy E in the laboratory
system. With (solid line) and without (dashed red line) SSS Coulomb re-summation factor, zoomed close to the
threshold (left), and using a wider energy range (right)

The cross section as a function of the positron energy F is shown in Fig. 10.6. The noticeable increase of the cross
section close to threshold by the SSS-factor is of practical interest for the low emittance production of muons, as
proposed in reference [BABGarcia+18].

10.4.2 Sampling of Energies and Angles
It is convenient to simulate the muon kinematic parameters in the center-of-mass (c.m.) system, and then to convert
into the laboratory frame.

The energies of all particles are the same in the c.m. frame and equal to

1
Bew = |/ 3 me(E+me). (10.22)

The muon momenta in the c.m. frame are P, = /E2, — mz. In what follows, let the cosine of the angle between

the c.m. momenta of the ;1 and e’ be denoted as x = cos Oy,

From the differential cross section it is easy to derive that, apart from normalization, the distribution in x is described
by

f@)de=(1+&6+22(1—€)de, —-1<z<1. (10.23)
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The value of this function is contained in the interval (1 + &) < f(z) < 2 and the generation of x is straightforward
using the rejection technique. Fig. 10.7 shows both generated and analytic distributions.

E=50GeV, £ =.874

My E=500 GeV, & = 0874

1 +cos,

Entries per bin

1Y) S P
-1 -0.8 -0.6 -0.4

il NI I IS T P
02 0 02 04 06 08 1
cosf,,

Fig. 10.7: Generated histograms with 10° entries each and the expected cos ., distributions (dashed lines) at £ = 50
and 500 GeV positron energy in the lab frame. The asymptotic 1 + cos 62, distribution valid for E — oo is shown as
dotted line.

The transverse momenta of the 1+ and p~ particles are the same, both in the c.m. and the lab frame, and their absolute
values are equal to

P = Py sinfom = Pon V1 — 22. (10.24)

The energies and longitudinal components of the muon momenta in the lab system may be obtained by means of a
Lorentz transformation. The velocity and Lorentz factor of the center-of-mass in the lab frame may be written as

E—m, 1 E+m, Eenm
= = = . 10.25
B Evm.’ TR \V om. - (10.25)
The laboratory energies and longitudinal components of the momenta of the positive and negative muons may then be
obtained:

E+:7(Ecm+xﬁpcm)a P+\\:7(6Ecm+xpcnl)v
E—:rY(Ecm_xBPcm); P—H:’V(BEcm_xPcm)~

Finally, for the vectors of the muon momenta one obtains:

Py = (+PLcosp, +P sing, Py ), (10.26)
P_:(—PLCOS(,D,—PLSHNP’P—H)’ |

where ¢ is a random azimuthal angle chosen between 0 and 2 7. The z-axis is directed along the momentum of the
initial positron in the lab frame.

The maximum and minimum energies of the muons are given by
1
EmaxziE(I‘F \/1_5) ’

Iy (10.27)
Fun 5 8 (1= V) 2(1+\t/h1—£) ’

The fly-out polar angles of the muons are approximately

6.~ P./Py, 6_~P/P_; (10.28)

the maximal angle 0,5 ~ e v/ 1 — & is always small compared to 1.
my
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10.4.3 Validity

The process described is assumed to be purely electromagnetic. It is based on virtual v exchange, and the Z-boson
exchange and v — Z interference processes are neglected. The Z-pole corresponds to a positron energy of £ =
MZ%/2m,. = 8136 TeV. The validity of the current implementation is therefore restricted to initial positron energies
of less than about 1000 TeV.

10.5 Positron Annihilation into Hadrons in Media

10.5.1 Introduction

The process G4eeToHadrons simulates the in-flight annihilation of a positron with an atomic electron into hadrons
[eal06]. Tt is assumed here that the atomic electron is initially free and at rest. Currently accurate cross section is
available with a validity range up to 1 TeV.

10.5.2 Cross Section

The annihilation of positrons and target electrons producing pion pairs in the final state (ete~ — 7+ 7~) may give an
appreciable contribution to electron-jet conversion at the LHC, and for the increasing total number of muons produced
in the beam pipe of the linear collider [eal06]. The threshold positron energy in the laboratory system for this process
with the target electron at rest is

By = 2m?2 /me —me ~ 70.35 GeV, (10.29)

where m,. and m, are the pion and electron masses, respectively. The total cross section is dominated by the reaction

ete”™ = py = ntan s, (10.30)
where ~ is a radiative photon and p(770) is a well known vector meson. This radiative correction is essential, because
it significantly modifies the shape of the resonance. Details of the theory are described in [BEIS99], in which the main
term and the leading a? corrections are taken into account.

Additional contribution to the hadron production cross section come from w(783) and ¢(1020) resonances with
atr—nY, KT K—, K; Kg, 1y, and 70~ final states.

10.5.3 Sampling the final state

The final state of the ete™ annihilation process is simulated by first sampling of radiative gamma using a sum of all
hadronic cross sections in the center of mass system. Photon energy is used to define new differential cross section.
After that, hadronic channel is randomly selected according to it partial cross section. Final state is sampled and final
particles transformed to the laboratory system.
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CHAPTER
ELEVEN

MUON INCIDENT

11.1 Muon lonisation

The class G4Mulonisation provides the continuous energy loss due to ionisation and simulates the ‘discrete’ part of
the ionisation, that is, delta rays produced by muons. Inside this class the following models are used:

* G4BraggModel (valid for protons with T' < 0.2 MeV)
* G4BetheBlochModel (valid for protons with 0.2 MeV < T < 1 GeV)
* G4MuBetheBlochModel (valid for protons with T'> 1 GeV)

The limit energy 0.2 MeV is equivalent to the proton limit energy 2 MeV because of scaling relation (7.5), which allows
simulation for muons with energy below 1 GeV in the same way as for point-like hadrons with spin 1/2 described in
Mean Energy Loss.

For higher energies the G4MuBetheBlochModel is applied, in which leading radiative corrections are taken into ac-
count [SRKP97]. Simple analytical formula for the cross section, derived with the logarithmic are used. Calculation
results appreciably differ from usual elastic n — e scattering in the region of high energy transfers me < T < Tha0
and give non-negligible correction to the total average energy loss of high-energy muons. The total cross section is

written as following:
e 2¢ dm E(F — ¢)
E.e)= E 1+ —In(1 In{ ——7"——

here o(E, €) is the differential cross sections, o(FE, €) g is the Bethe-Bloch cross section (12.8), m, is the electron
mass, m,, is the muon mass, £ is the muon energy, € is the energy transfer, e = w + T', where T is the electron kinetic
energy and w is the energy of radiative gamma.

For computation of the truncated mean energy loss (7.1) the partial integration of the expression (11.1) is performed
S(E, Eup) = SBB(Ea Eup) + Src (E7 eup)a €up = min(emax, Ecut)a

where term S is the Bethe-Bloch truncated energy loss (12.2) for the interval of energy transfer (0 — €,,,) and term
Src is a correction due to radiative effects. The function become smooth after log-substitution and is computed by
numerical integration

In€yp

Sro (B, ewp) = / E(o(B,¢) — onp(E, e))d(ne),

Ineq
where lower limit €; does not effect result of integration in first order and in the class G4MuBetheBlochModel the
default value ¢; = 100 keV is used.

For computation of the discrete cross section (7.2) another substitution is used in order to perform numerical integration
of a smooth function

1/€eup
o(E) = /1 o(E,e)d(1/e).

/fnLa'J;
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The sampling of energy transfer is performed between 1/€,, and 1/€,,q, using rejection constant for the function
€20(E, €). After the successful sampling of the energy transfer, the direction of the scattered electron is generated
with respect to the direction of the incident particle. The energy of radiative gamma is neglected. The azimuthal
electron angle ¢ is generated isotropically. The polar angle @ is calculated from energy-momentum conservation. This
information is used to calculate the energy and momentum of both scattered particles and to transform them into the
global coordinate system.

11.2 Bremsstrahlung

Bremsstrahlung dominates other muon interaction processes in the region of catastrophic collisions (v > 0.1 ), that is
at “moderate” muon energies above the kinematic limit for knock—on electron production. At high energies (£ > 1
TeV) this process contributes about 40% of the average muon energy loss.

11.2.1 Differential Cross Section

The differential cross section for muon bremsstrahlung (in units of cmZ/(g GeV) can be written as

do(E,e,Z,A) 16 m o1 3 5
—————— = —alNa(—r.)*—Z2(ZP, + ®.)(1 — -
< 3 A(uT)eA (Z2%n +@e)(1 — v+ 07
=0 if e>enax=F —p,
where © and m are the muon and electron masses, Z and A are the atomic number and atomic weight of the material,
and N4 is Avogadro’s number. If E and 7' are the initial total and kinetic energy of the muon, and ¢ is the emitted
photon energy, then ¢ = E — E’ and the relative energy transfer v = ¢/ E.

®,, represents the contribution of the nucleus and can be expressed as
BZV3(u+6(D}/E—2))

D!, (m+ 8/eBZ~1/3)
=0 if negative.

$, =1In

®. represents the contribution of the electrons and can be expressed as

B/z—2/3
d, =1In 5 K :
1 _
<1 + mQ\/E> (m + 0/eB'Z—2/3)
=0 ife>e . =E/(1+p?*/2mE);

=0 if negative.
In ®,, and ®., for all nuclei except hydrogen,
§ = u*e/2EE" = pi*v/2(E — ¢);
D, =D{~Y% D, =1.54A%27;
B =183,
B’ = 1429,
Ve = 1.648(721271).
For hydrogen (Z=1) B = 202.4, B’ = 446, D, = D,,.

These formulae are taken mostly from Refs. [KKP95] and [SRKP97]. They include improved nuclear size corrections
in comparison with Ref. [PS68] in the region v ~ 1 and low Z. Bremsstrahlung on atomic electrons (taking into
account target recoil and atomic binding) is introduced instead of a rough substitution Z(Z + 1). A correction for
processes with nucleus excitation is also included [ABB94].
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Applicability and Restrictions of the Method

The above formulae assume that:
1. E > pu, hence the ultrarelativistic approximation is used;
2. E < 10%° eV; above this energy, LPM suppression can be expected:;

3. v > 1076 ; below 10~% Ter-Mikaelyan suppression takes place. However, in the latter region the cross section
of muon bremsstrahlung is several orders of magnitude less than that of other processes.

The Coulomb correction (for high Z) is not included. However, existing calculations [AB97] show that for muon
bremsstrahlung this correction is small.

11.2.2 Continuous Energy Loss

The restricted energy loss for muon bremsstrahlung (dE/dx),est With relative transfers v = ¢/(T + p) < veyt can be

calculated as follows :
dE €cut Vcut
() 2/ eo(F,e)de = (T—|—u)/ eo(E,e)dv.
dx rest 0 0

If the user cut veuy > Vmax = 1/(T + u), the total average energy loss is calculated. Integration is done using
Gaussian quadratures, and binning provides an accuracy better than about 0.03% for T' = 1 GeV, Z = 1. This rapidly
improves with increasing 7" and Z.

11.2.3 Total Cross Section

The integration of the differential cross section over de gives the total cross section for muon bremsstrahlung:

€max In vmax
Otot (F, €cut) = / o(E,€)de = / eo(E, e)d(Inv),
€ 1

cut N Vcut

where VUmax = T/(T + ,u) If Veut 2 Umax » Otot = 0.

11.2.4 Sampling

The photon energy ¢, is found by numerically solving the equation :

P :/mx J(E,e,Z,A)de// o o(E,e, Z,A)de .

cut

Here P is the random uniform probability, €ax = T, and €yt = (T + ) * Veut- Umin.cut = 10~° is the minimal
relative energy transfer adopted in the algorithm.

For fast sampling, the solution of the above equation is tabulated at initialization time for selected Z, T" and P. During
simulation, this table is interpolated in order to find the value of ¢, corresponding to the probability P.

The tabulation routine uses accurate functions for the differential cross section. The table contains values of
zp = In(vp/Vmax)/ IN(Vmax/Veut ) s (11.2)

where v, = €,/(T + u) and vymax = T/(T + ). Tabulation is performed in the range 1 < Z < 128,1 < T <
1000 PeV, 10~® < P < 1 with constant logarithmic steps. Atomic weight (which is a required parameter in the cross
section) is estimated here with an iterative solution of the approximate relation:

A=2Z(2+0.015A%3).
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For Z =1, A =11is used.

To find z,, (and thus €,) corresponding to a given probability P, the sampling method performs a linear interpolation
inln Z and In T, and a cubic, 4 point Lagrangian interpolation in In P. For P < Py, a linear interpolation in (P, x)
coordinates is used, with x = 0 at P = 0. Then the energy ¢, is obtained from the inverse transformation of (11.2) :

€p = (T + ﬂ)vmax(vmax/vcut)xp

The algorithm with the parameters described above has been tested for various Z and T'. It reproduces the differential
cross section to within 0.2 — 0.7 % for T' > 10 GeV. The average total energy loss is accurate to within 0.5%. While
accuracy improves with increasing 7', satisfactory results are also obtained for 1 <7 < 10 GeV.

It is important to note that this sampling scheme allows the generation of ¢, for different user cuts on v which are

above Upmin.cut. 10 perform such a simulation, it is sufficient to define a new probability variable

P/ =P Otot (Uuser.cut)/atot (Umin.cut)

and use it in the sampling method. Time consuming re-calculation of the 3-dimensional table is therefore not required
because only the tabulation of oot (Vuser.cut) is needed.

The small-angle, ultrarelativistic approximation is used for the simulation (with about 20% accuracy at § < 6* ~ 1)
of the angular distribution of the final state muon and photon. Since the target recoil is small, the muon and photon
are directed symmetrically (with equal transverse momenta and coplanar with the initial muon):

Piy=Dpiy, where pi,=FE'0, pi,=eco,.
6,, and 6., are muon and photon emission angles. The distribution in the variable r = E#6., /. is given by
f(rydr ~ rdr/(141r%)2.
Random angles are sampled as follows:

= Ee,‘/7

where

1ia’ “25%7 Tmax = min(1, E'/e) - B0/,

max

and £ is a random number uniformly distributed between 0 and 1.

11.3 Positron - Electron Pair Production by Muons

Direct electron pair production is one of the most important muon interaction processes. At TeV muon energies,
the pair production cross section exceeds those of other muon interaction processes over a range of energy transfers
between 100 MeV and 0.1E,,. The average energy loss for pair production increases linearly with muon energy, and
in the TeV region this process contributes more than half the total energy loss rate.

To adequately describe the number of pairs produced, the average energy loss and the stochastic energy loss distribu-
tion, the differential cross section behavior over an energy transfer range of 5 MeV < € < 0.1 -E,, must be accurately
reproduced. This is is because the main contribution to the total cross section is given by transferred energies 5 MeV
<€ <0.01 -E,, and because the contribution to the average muon energy loss is determined mostly in the region
0.001-F, <e<0.1-E,.

For a theoretical description of the cross section, the formulae of Ref. [KP70] are used, along with a correction for
finite nuclear size [KP71]. To take into account electron pair production in the field of atomic electrons, the inelastic
atomic form factor contribution of Ref. [Kel98] is also applied.
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11.3.1 Differential Cross Section

Definitions and Applicability

In the following discussion, these definitions are used:
* m and p are the electron and muon masses, respectively
* F = FE,, is the total muon energy, /' =T +
¢ Z and A are the atomic number and weight of the material

* ¢ is the total pair energy or, approximately, the muon energy loss (E — E’)

cv=¢/FE
e c=2718...
o A* =183.

The formula for the differential cross section applies when:

* B, >»puFE >2-5GeV)and E, < 10'® - 107 eV. If muon energies exceed this limit, the LPM (Landau

Pomeranchuk Migdal) effect may become important, depending on the material

* the muon energy transfer € lies between €min = 4m and €yax = F, — 37\/5 wz 1/3 although the formal lower

limit is € > 2m, and the formal upper limit requires E;/l, > .

e Z <40 -50. For higher Z, the Coulomb correction is important but has not been sufficiently studied theoreti-

cally.

Formulae

The differential cross section for electron pair production by muons o(Z, A, E, €) can be written as :

4 Z(Z+(Q)

1 —v Pmax
o(Z, A E e) = T AL (arg)? - / G(Z,E,v,p)dp,
0

where
G(Z,E,v,p) = ®c + (m/,u)2q)m

o /
(Pe”u - Bev#Leﬂu

and
®,, =0 whenever &., <O0.

B, and B,, do not depend on Z, A, and are given by

1-p* -8

2y.

Be=K2+p%a+ﬁ>+a3+fﬂm(1+§)+

~ 5B #2807 for €2 10%

A+ <1+ 32ﬁ> - %(1+2ﬂ)(1 —pQ)} In(1+€) + a-p" -6

B
1+¢

w=

—

B, ~

[NCRa,S

[(5—p*) +B(B+p")] for £<107%

+(1+28)(1 - p*);

(11.3)

11.3. Positron - Electron Pair Production by Muons

151



Physics Reference Manual, Release 10.7

Also,
pv* (1—p
g- 1Y (—); f=
4m? (1 —v) 17'0)
A Z7V3 T+ 9A+Ye) 1 3le/3
o
Le=1In 1 4 2myeArZ- 1/3(1+£)(1+Y) B iln s > (1+&01+Ye)
Ev(1—p?)
r g (w/m)A*Z 1/3\/1+1/£)(1+}//L) 3 ,1/3
L= e ey |57 NCESVERERALE
Ev(1-p?)

For faster computing, the expressions for L/, . are further algebraically transformed. The functions L  include the
nuclear size correction [KP71] in comparison with parameterization [KP70] :

5—p*+48(1+p% ,
2(1+38) In(3 +1/€) — p* = 28(2 — p?)’
v 44 p2+3B8(1+ p?) _
PG +28) B +E) + 15 p2

Pmax = [1 — 6,u2/E2(1 —v)]y/1—=4m/Ev.

}/e:

Comment on the Calculation of the Integral [dp in Eq.(11.3)

Pmax

The integral | G(Z, E, v, p) dp is computed with the substitutions:
0

t=1In(1-p),
1 —p=exp(t),
14+ p=2—exp(t),
1-p*=c(2-¢Y.
After that,

Pmax 0
/ G(Z,E,v,p) dp:/ G(Z,E,v,p) e dt, (11.4)
0 t

where

oy (- )

1+ (1- g ) 1 - 2

To compute the integral of Eq.(11.4) with an accuracy better than 0.5%, Gaussian quadrature with N = 8 points is
sufficient.

tmin = In

The function {(F, Z) in Eq.(11.3) serves to take into account the process on atomic electrons (inelastic atomic form
factor contribution). To treat the energy loss balance correctly, the following approximation, which is an algebraic
transformation of the expression in Ref. [Kel98], is used:

E/p
(. 2) = "B T zrEy 0%
’ L/ :
0.058In 20— —0.14

=0 if the numerator is negative.
ForE<35u, ((E,Z)=0. Alsovy; = 1.95-1075 and 7o = 5.30 - 1075,

The above formulae make use of the Thomas-Fermi model which is not good enough for light elements. For hydrogen
(Z =1) the following parameters must be changed:
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e A* =183 = 202.4;
e v =1.95-107% = 4.4-1077;
* v =25.30-10"% = 4.8-1075.

11.3.2 Total Cross Section and Restricted Energy Loss

If the user’s cut for the energy transfer e, is greater than ey, the process is represented by continuous restricted
energy loss for interactions with ¢ < €., and discrete collisions with € > €.y;. Respective values of the total cross
section and restricted energy loss rate are defined as:

Otot = / ) o(E,e)de;  (dE/dT)restr = / eo(E,e€)de.

cut €min

For faster computing, In € substitution and Gaussian quadratures are used.

11.3.3 Sampling of Positron - Electron Pair Production

The ete™ pair energy ep, is found numerically by solving the equation

P:/WXJ(Z,A,T,e)de //mxa(Z,A,T,e)de (11.5)
cut

€p
or
eEp €max
1—P:/ o(Z, A, T, ¢)de // o(Z,A,T,e)de (11.6)
cut cut

To reach high sampling speed, solutions of Eqs.(11.5), (11.6) are tabulated at initialization time. Two 3-dimensional
tables (referred to here as A and B) of ep (P, T, Z) are created, and then interpolation is used to sample ep.

The number and spacing of entries in the table are chosen as follows:

¢ aconstant increment in In 7" is chosen such that there are four points per decade in the range Tinin — Tmax. The
default range of muon kinetic energies in GEANT4 is 7' = 1 GeV — 1000 PeV.

* a constant increment in In Z is chosen. The shape of the sampling distribution does depend on Z, but very
weakly, so that eight points in the range 1 < Z < 128 are sufficient. There is practically no dependence on the
atomic weight A.

« for probabilities P < 0.5, Eq.(11.5) is used and Table A is computed with a constant increment in In P in the
range 1077 < P < 0.5. The number of points in In P for Table A is about 100.

 for P > 0.5, Eq.(11.6) is used and Table B is computed with a constant increment in In(1 — P) in the range
107° < (1 = P) < 0.5. In this case 50 points are sufficient.

The values of In(ep — cut) are stored in both Table A and Table B.
To create the “probability tables” for each (T, Z) pair, the following procedure is used:

* atemporary table of ~ 2000 values of € - o(Z, A, T €) is constructed with a constant increment (~ 0.02) in In e
in the range (cut, €max). € is taken in the middle of the corresponding bin in In e.

¢ the accumulated cross sections

In €max
o1 :/ eo(Z,A,T,e)d(lne)
1

ne
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and

Ine
o9 = / eo(Z,A,T,e)d(lne)
1

n(cut)

are calculated by summing the temporary table over the values above In e (for o1) and below In € (for o2) and
then normalizing to obtain the accumulated probability functions.

« finally, values of In(ep — cut) for corresponding values of In P and In(1 — P) are calculated by linear interpola-
tion of the above accumulated probabilities to form Tables A and B. The monotonic behavior of the accumulated
cross sections is very useful in speeding up the interpolation procedure.

The random transferred energy corresponding to a probability P, is then found by linear interpolation in In Z and
In T, and a cubic interpolation in In P for Table A or in In(1 — P) for Table B. For P < 10~ " and (1 — P) < 1075,
linear extrapolation using the entries at the edges of the tables may be safely used. Electron pair energy is related to
the auxiliary variable z = In(ep — cut) found by the trivial interpolation ep = e® + cut.

Similar to muon bremsstrahlung (Bremsstrahlung), this sampling algorithm does not re-initialize the tables for user
cuts greater than cut,,;,. Instead, the probability variable is redefined as

P/ = PUtot (CUﬁuser)/o-tot (CUtmin>7

and P’ is used for sampling.

In the simulation of the final state, the muon deflection angle (which is of the order of m/F) is neglected. The
procedure for sampling the energy partition between e and e~ and their emission angles is similar to that used for
the v — et e~ conversion.

11.4 Muon Photonuclear Interaction

The inelastic interaction of muons with nuclei is important at high muon energies (£ > 10 GeV), and at relatively high
energy transfers v (v/E > 1072). It is especially important for light materials and for the study of detector response
to high energy muons, muon propagation and muon-induced hadronic background. The average energy loss for this
process increases almost linearly with energy, and at TeV muon energies constitutes about 10% of the energy loss rate.

The main contribution to the cross section o(F, ) and energy loss comes from the low Q?-region ( Q% < 1 GeV?).
In this domain, many simplifications can be made in the theoretical consideration of the process in order to obtain
convenient and simple formulae for the cross section. Most widely used are the expressions given by Borog and
Petrukhin [BP75], and Bezrukov and Bugaev [BB81]. Results from these authors agree within 10% for the differential
cross section and within about 5% for the average energy loss, provided the same photonuclear cross section, oy, is
used in the calculations.

11.4.1 Differential Cross Section

The Borog and Petrukhin formula for the cross section is based on:
* Hand’s formalism [Han63] for inelastic muon scattering,

* a semi-phenomenological inelastic form factor, which is a Vector Dominance Model with parameters estimated
from experimental data, and

* nuclear shadowing effects with a reasonable theoretical parameterization [BCG72].

For E > 10 GeV, the Borog and Petrukhin cross section, differential in transferred energy, is

o(E,v) = U(v)®(E,v), (11.7)
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o A Nav 1
E2(1—1)) HZUQ
2 9,2 5 (1—|— 4 ﬂ)
<I>(E,v):v—l+[1—v+v(1—&—#2)}111 MEU /1\\(1 E)v , (11.9)
2 A L+ 50 (1+ 557 + 5

where v is the energy lost by the muon, v = v/E, and p and M are the muon and nucleon (proton) masses, respectively.
A is a Vector Dominance Model parameter in the inelastic form factor which is estimated to be A% = 0.4 GeV?.

For A.g, which includes the effect of nuclear shadowing, the parameterization [BCG72]
Acr = 0.224 +0.78A°%

is chosen.

A reasonable choice for the photonuclear cross section, o, is the parameterization obtained by Caldwell et al.
[eal79] based on the experimental data on photoproduction by real photons:

oyn = (492 +11.1In K + 151.8/VK) - 107%cm?, K in GeV. (11.10)

The upper limit of the transferred energy is taken to be vy,.x = E — M /2. The choice of the lower limit vy, is less
certain since the formula (11.7), (11.8), (11.9) is not valid in this domain. Fortunately, vy,;, influences the total cross
section only logarithmically and has no practical effect on the average energy loss for high energy muons. Hence, a
reasonable choice for v,;, is 0.2 GeV.

In Eq.(11.8), Aeg and o, appear as factors. A more rigorous theoretical approach may lead to some dependence
of the shadowing effect on v and E’; therefore in the differential cross section and in the sampling procedure, this
possibility is foreseen and the atomic weight A of the element is kept as an explicit parameter.

The total cross section is obtained by integration of Eq.(11.7) between vy, and vy, to facilitate the computation, a
In(v) substitution is used.

11.4.2 Sampling

Sampling the Transferred Energy

The muon photonuclear interaction is always treated as a discrete process with its mean free path determined by the
total cross section. The total cross section is obtained by the numerical integration of Eq.(11.7) within the limits vy,
and vp,.x. The process is considered for muon energies 1GeV < T < 1000 PeV, though it should be noted that above
100 TeV the extrapolation (Eq.(11.10)) of 0.,y may be too crude. The random transferred energy, v, is found from
the numerical solution of the equation :

P:/ max(T(E,Z/)dy// rrme(E,Z/)dl/. (11.11)

min

Here P is the random uniform probability, with vmax = E — M/2 and vpin = 0.2 GeV. For fast sampling, the
solution of Eq.(11.11) is tabulated at initialization time. During simulation, the sampling method returns a value of v,
corresponding to the probability P, by interpolating the table. The tabulation routine uses Eq.(11.7) for the differential
cross section. The table contains values of

xp = ln(yp/ymax)/ln(l/max/ymin)7 (1112)

calculated at each point on a three-dimensional grid with constant spacings in In(7"), In(A4) and In(P) . The sampling
uses linear interpolations in In(7T) and In(A), and a cubic interpolation in In(P). Then the transferred energy is
calculated from the inverse transformation of Eq.(11.12), v, = Vmax (Vmax/Vmin ) *?. Tabulated parameters reproduce
the theoretical dependence to better than 2% for T' > 1 GeV and better than 1% for T' > 10 GeV.
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Sampling the Muon Scattering Angle

According to Refs. [BP75][BKUP77], in the region where the four-momentum transfer is not very large (Q? <
3GeV?), the t-dependence of the cross section may be described as:

do (1 — t/tmax)
dat "t t/2)(1+ t/md)

(1= y)(1 = tmin/t) +y*/2], (11.13)

where ¢ is the square of the four-momentum transfer, Q? = 2(EE’ — PP’ cos ) — u?). Also, tmin = (uy)?/(1 —v),
y=v/F and ty,.x = 2Mv. v = E — E’ is the energy lost by the muon and E is the total initial muon energy. M is
the nucleon (proton) mass and m2 = A? ~ 0.4 GeV? is a phenomenological parameter determining the behavior of
the inelastic form factor. Factors which depend weakly, or not at all, on ¢ are omitted.

To simulate random ¢ and hence the random muon deflection angle, it is convenient to represent Eq.(11.13) in the form

o(t) ~ f(t)g(t),
where
1
)= —
0= am) -
g(t): lft/tmax . (17y)(17tm1n/t)+y2/2 ’
1+1t/ty (1—-y)+y?/2 ’
and
t; = min(v?,md) ty = max(v?, m3). (11.15)
tp is found analytically from Eq.(11.14) :
tmaxtl

tP = ( ) P )
tmax (fmin+t
(max +11) {tm;n(tmﬁti)} ~ Tmax
where P is a random uniform number between 0 and 1, which is accepted with probability g(¢). The conditions of
Eq.(11.15) make use of the symmetry between 2 and m2 in Eq.(11.13) and allow increased selection efficiency, which
is typically > 0.7. The polar muon deflection angle # can easily be found from'.

tp — tmi
.2 P min
0/2) = .
S 0/2) = TEE =2 — 5t

The hadronic vertex is generated by the hadronic processes taking into account the four-momentum transfer.

! This convenient formula has been shown to the authors by D.A. Timashkov.
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CHAPTER
TWELVE

CHARGED HADRON INCIDENT

12.1 Hadron and lon lonisation

12.1.1 Method

The class G4hlonisation provides the continuous energy loss due to ionisation and simulates the ‘discrete’ part of the
ionisation, that is, d-rays produced by charged hadrons. The class G4ionlonisation is intended for the simulation of
energy loss by positive ions with change greater than unit. Inside these classes the following models are used:

* G4BetheBlochModel, valid for protons with T' > 2 MeV

* G4BraggModel,valid for protons with 7' < 2 MeV

* G4BragglonModel, valid for protons with T' < 2 MeV

* G4ICRU73Q0Model, valid for anti-protons with 7' < 2 MeV

The scaling relation (7.5) is a basic conception for the description of ionisation of heavy charged particles. It is used
both in energy loss calculation and in determination of the validity range of models. Namely the T}, =2 MeV limit for
protons is scaled for a particle with mass M; by the ratio of the particle mass to the proton mass T; = T, M,,/M,;.

For all ionisation models the value of the maximum energy transferable to a free electron 7},,, is given by the
following relation [ea06]:

2m.c*(7? — 1)

Tmes = T (/M) 1 (me B2

(12.1)

where m. is the electron mass and M is the mass of the incident particle. The method of calculation of the continuous
energy loss and the total cross-section are explained below.

12.1.2 Continuous Energy Loss

The integration of (7.1) leads to the Bethe-Bloch restricted energy loss (1" < T¢,;) formula [ea06], which is modified
taking into account various corrections [Ahl80]:

dE 22 2me? 32~2T, T, 2C,
= =2mr’mc*ng = |1 S E Tow) g2 (g up -0 — c F 12.2
T TTZME Nl 52 {n ( 2 > 15} + T, 0 7 + S+ ( )
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where

1. = classical electron radius = e?/(4megme?)
mec? = mass-energy of the electron
ne; = electron density in the material
I = mean excitation energy in the material
Z = atomic number of the material
z = charge of the hadron in units of the electron change
v = E/mc?
B2 =1-(1/7)
Tup = min(Teut, Trnaz)
0 = density effect function
C. = shell correction function
0.5T%p
E

2
S = spin term = 0 fors = 0, ( ) fors=1/2

E = primary energy

F' = high order corrections

For spin large that 1/2 the same S term is used in the current model. In a single element the electron density is

Naq)p
A

Nel = 2 Mgt = 2

(Nav: Avogadro number, p: density of the material, A: mass of a mole). In a compound material
Nopw;
Nel = E Zi Nati = E Z aj:l_ i
. . 1
1 1

w; is the proportion by mass of the i*" element, with molar mass A;.

The mean excitation energy I for all elements is tabulated according to the NIST recommended values for GEANT4
NIST materials, for other materials ICRU recommended values [eal84] are used.

Shell Correction

2C.. /7 is the so-called shell correction term which accounts for the fact of interaction of atomic electrons with atomic
nucleus. This term more visible at low energies and for heavy atoms. The classical expression for the term [eal93] is
used

J, 32
C=> Cyby,m), v=KLM,.., 9:;, W= (12.3)

where « is the fine structure constant, 3 is the hadron velocity, J,, is the ionisation energy of the shell v, €, is Bohr
ionisation energy of the shell v, Z,, is the effective charge of the shell v. First terms Cx and C'r, can be analytically
computed in using an assumption non-relativistic hydrogenic wave functions [Wal52][Wal56]. The results [Kha68] of
tabulation of these computations in the interval of parameters 7,, = 0.005-10 and 6,, = 0.25-0.95 are used directly. For
higher values of 7, the parameterization [Kha68] is applied:

K K. K
oLk
n n n

where coefficients K; provide smooth shape of the function. The effective nuclear charge for the L-shell can be
reproduced as Z;, = Z — d, d is a parameter shown in Table 12.1.
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Table 12.1: Effective nuclear charge for the L-shell [em-ICRU49].

Z |3 4 5 6 7 8 9 >9
d | 1.72 | 209 | 2.48 | 2.82 | 3.16 | 3.53 | 3.84 | 4.15

For outer shells the calculations are not available, so L-shell parameterization is used and the following scaling relation
[eal93][Bic92] is applied:
n, Jy

Cl/ - VIICL(GLaHl/nL); Vl/ - Hu - 5

12.4
L 7 (12.4)

where V, is a vertical scaling factor proportional to number of electrons at the shell n,,. The contribution of the shell
correction term is about 10% for protons at 7' =2 MeV.

Density Correction

d is a correction term which takes into account the reduction in energy loss due to the so-called density effect. This
becomes important at high energies because media have a tendency to become polarized as the incident particle
velocity increases. As a consequence, the atoms in a medium can no longer be considered as isolated. To correct for
this effect the formulation of Sternheimer [SP71] is used:

x is a kinetic variable of the particle : z = log;,(v3) = In(y2?%)/4.606, and 6(z) is defined by

for z<uzg: o0(xz)=0
for z € [xg, x1]: 0(z) =4.6062 — C + a(x; — )™ (12.5)
for = > : 0(x) = 4.606x — C

where the matter-dependent constants are calculated as follows:

hv, = plasma energy of the medium = VAaTngrdme? o = Arngrehc
C=1+2In(I/hvp)

zq = C/4.606 (12.6)
a = 4.606(xq — x0)/(x1 — 20)™
m = 3.
For condensed media
for C <3.681 xz9=0.2 Ty =2
F<100eV 1\ for 0> 3.681 mp=0.326C — 1.0 a1 =
1>100eV for C <5215 xz9=0.2 T =

forC > 5215 290=0.326C —-15 z;=3

and for gaseous media

for C < 10. g = 1.6 r1 =4
for C €[10.0, 10.5] x9 = 1.7 T =
for Ce[10.5,11.0]  z=18 21 =
for C €[11.0, 11.5] xo=1.9 =
for C€[11.5,12.25[ w0 =2. vy =
for C € [12.25, 13.804] o = 2. 21 =5
for C > 13.804 xo = 0.326C' — 2.5 x; =5.
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High Order Corrections
High order corrections term to Bethe-Bloch formula (12.2) can be expressed as

F=G—8S+2(z2L1 + 2%Ly), (12.7)
where G is the Mott correction term, S is the finite size correction term, L is the Barkas correction, Lo is the Bloch
correction. The Mott term [AhI80] describes the close-collision corrections tend to become more important at large
velocities and higher charge of projectile. The Fermi result is used:

G = mazp.

The Barkas correction term describes distant collisions. The parameterization is expressed in the form:

_ L.29F4(b/2'?) B2
V= T sz 0 TT g2

where F4 is tabulated function [ARB73], b is scaled minimum impact parameter shown in Table 12.2 [eal93]. This
and other corrections depending on atomic properties are assumed to be additive for mixtures and compounds.

Table 12.2: Scaled minimum impact parameter b.

Z | 1(Hz9as) | 1 2 3-10 | 11-17 | 18 | 19-25 | 26-50 | > 50
d | 0.6 1.8 |06 | 1.8 1.4 1.8 1.4 1.35 1.3

For the Bloch correction term the classical expression [eal93] is following:

1 zZa
2 2
PLy= Y e, y= o
2 4 — n(n? + y?) 4 B

The finite size correction term takes into account the space distribution of charge of the projectile particle. For muon it
is zero, for hadrons this term become visible at energies above few hundred GeV and the following parameterization
[Ahl80] is used:

_ 2meTmaz

S =1In(1+q), Q—T»

where T,,,4, 1s given in relation (12.1), € is proportional to the inverse effective radius of the projectile (Table 12.3).

Table 12.3: The values of the € parameter for different particle types.
mesons, spin =0 (7%, KT) [ 0.736 GeV
baryons, spin = 1/2 0.843 GeV
ions 0.843 A/3 GeV

All these terms break scaling relation (7.5) if the projectile particle charge differs from £1. To take this circumstance
into account in G4ionlonisation process at initialisation time the term F is ignored for the computation of the dE/dx
table. At run time this term is taken into account by adding to the mean energy loss a value

22

ﬁZ

where As is the true step length and F' is the high order correction term (12.7).

AT’ = 27rimc*ng = F As,
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Parameterizations at Low Energies

For scaled energies below Tj;,, = 2 MeV shell correction becomes very large and precision of the Bethe-Bloch
formula degrades, so parameterisation of evaluated data for stopping powers at low energies is required. These
parameterisations for all atoms is available from ICRU’49 report [eal93]. The proton parametrisation is used in
G4BraggModel, which is included by default in the process G4hlonisation. The alpha particle parameterisation is
used in the G4BragglonModel, which is included by default in the process G4ionlonisation. To provide a smooth
transition between low-energy and high-energy models the modified energy loss expression is used for high energy

S(T) = S (T) + (S(Tiim) — sHmim»?', T > Tiim,

where S is smoothed stopping power, Sy is stopping power from formula (12.2) and Sz, is the low-energy parameter-
isation.

The precision of Bethe-Bloch formula for 7>10 MeV is within 2%, below the precision degrades and at 1 keV
only 20% may be guaranteed. In the energy interval 1-10 MeV the quality of description of the stopping power
varied from atom to atom. To provide more stable and precise parameterisation the data from the NIST databases are
included inside the standard package. These data are provided for 316 predefined materials (98 elemental and 180
compounds). Note that 278 are “real” NIST materials taken from [NISa][NISb][SBS84] and the remainder are based
on their chemical formulae (16 HEP Materials, 3 Space Science Materials and 19 Biomedical Materials). The data
from the PSTAR database are included into G4BraggModel. The data from the ASTAR database are included into
G4BragglonModel. So, if GEANT4 material is defined as a NIST material, than NIST data are used for low-energy
parameterisation of stopping power. If material is not from the NIST database, then the ICRU’49 parameterisation is
used. It is suggested to refer to the class GANistMaterialBuilder to determine the correct nomenclature and
composition for each material.

12.1.3 Nuclear Stopping

Nuclear stopping due to elastic ion-ion scattering since GEANT4 v9.3 can be simulated with the continuous process
G4NuclearStopping. By default this correction is active and the ICRU’49 parameterisation [eal93] is used, which is
implemented in the model class G4ICRU49NuclearStoppingModel.

12.1.4 Total Cross Section per Atom

For T' > I the differential cross section can be written as

d 221
9 2nrimc®Z L [1 - B2

o P (12.8)

+ s

T T?
Tnaz ~ 2E?

[ea06], where s = O for spinless particles and s = 1 for others. The correction for spin 1/2 is exact and it is not for other
values of spin. In described models there is an internal limit 7%, > I. Integrating from T¢, to T}, gives the total
cross section per atom :

2mr2 7 22 1 1 g T Tonaz — T
7B Tcu _ e i3 2 o o 1 max mazx cut 12.9
0( ’ ’ t) ﬁQ mesx |:(Tcut T’mam ) Tma:p " Tcut *e 2E2 ( )

In a given material the mean free path is:

A= (g o)™t or A= (>, nati - O'i)71

The mean free path is tabulated during initialization as a function of the material and of the energy for all kinds of
charged particles.
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12.1.5 Simulating Delta-ray Production

A short overview of the sampling method is given in Section 2. Apart from the normalization, the cross section (12.8)
can be factorized:

= CIT)(T) With T € [T, T
where
f(T) = 7
g(T)=1- BZTZM + SQTT;
The energy 1" is chosen by

1. sampling T from f(7T)
2. calculating the rejection function g(7") and accepting the sampled 7" with a probability of g(7).

After the successful sampling of the energy, the direction of the scattered electron is generated with respect to the
direction of the incident particle. The azimuthal angle ¢ is generated isotropically. The polar angle 6 is calculated from
energy-momentum conservation. This information is used to calculate the energy and momentum of both scattered
particles and to transform them into the global coordinate system.

12.1.6 lon Effective Charge

As ions penetrate matter they exchange electrons with the medium. In the implementation of G4ionlonisation the
effective charge approach is used [ZBL85]. A state of equilibrium between the ion and the medium is assumed, so
that the ion’s effective charge can be calculated as a function of its kinetic energy in a given material. Before and after
each step the dynamic charge of the ion is recalculated and saved in G4DynamicParticle, where it can be used not only
for energy loss calculations but also for the sampling of transportation in an electromagnetic field.

The ion effective charge is expressed via the ion charge z; and the fractional effective charge of ion ~;:
Zeff = YiZi- (12.10)

For helium ions fractional effective charge is parameterized for all elements

5 2
; 7+0.06Z
Di=|l—exp|—) C;Q <1—|—ex —(7.6 — 2) ,
(vae) p ]Z:O iQ 000 &<P(=( Q)%) (1211
Q = max(0,InT),
where the coefficients C; are the same for all elements, and the helium ion kinetic energy 7" is in keV/amu.
The following expression is used for heavy ions [BK82]:
1- 2 18 +0.00152) exp(—(7.6 — Q)?
. (H 2 q <ZO> ln(1+A2)) (1+ (0.18 4 0.0015 )Ze2xp( (7.6 — Q) )) | (12.12)
F i

where q is the fractional average charge of the ion, vg is the Bohr velocity, vr is the Fermi velocity of the electrons in
the target medium, and A is the term taking into account the screening effect:

VR (1 - ‘J)2/3

A=10——10n2L .
Vo Zil/?’(GJrq)

(12.13)
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The Fermi velocity of the medium is of the same order as the Bohr velocity, and its exact value depends on the detailed
electronic structure of the medium. The expression for the fractional average charge of the ion is the following:

q = [1 — exp(0.803y"3 — 1.3167y%® — 0.38157y — 0.008983y2)], (12.14)

where y is a parameter that depends on the ion velocity v;

) 2
v (1+"F>. (12.15)

Vo Z 2/3 5’()12
The parametrisation of the effective charge of the ion applied if the kinetic energy is below limit value
M;
T < 10z;— MeV, .
z M, e (12.16)

where M; is the ion mass and M, is the proton mass.

12.2 Low energy extensions

12.2.1 Energy losses of slow negative particles

At low energies, e.g. below a few MeV for protons/antiprotons, the Bethe-Bloch formula is no longer accurate in
describing the energy loss of charged hadrons and higher Z terms should be taken in account. Odd terms in Z lead to
a significant difference between energy loss of positively and negatively charged particles. The energy loss of negative
hadrons is scaled from that of antiprotons. The antiproton energy loss is calculated according to the quantum harmonic
oscillator model is used, as described in [eal05] and references therein. The lower limit of applicability of the model
is chosen for all materials at 10 keV. Below this value stopping power is set to constant equal to the dF /dx at 10 keV.

12.2.2 Energy losses of hadrons in compounds

To obtain energy losses in a mixture or compound, the absorber can be thought of as made up of thin layers of pure
elements with weights proportional to the electron density of the element in the absorber (Bragg’s rule):

dE dE
w2 (dx> . (12.17)

where the sum is taken over all elements of the absorber, 7 is the number of the element, (dF/dx); is energy loss in
the pure ¢-th element.

Bragg’s rule is very accurate for relativistic particles when the interaction of electrons with a nucleus is negligible.
But at low energies the accuracy of Bragg’s rule is limited because the energy loss to the electrons in any material
depends on the detailed orbital and excitation structure of the material. In the description of GEANT4 materials there
is a special attribute: the chemical formula. It is used in the following way:

* if the data on the stopping power for a compound as a function of the proton kinetic energy is available (Table
12.4), then the direct parametrisation of the data for this material is performed;

« if the data on the stopping power for a compound is available for only one incident energy (Table 12.5), then the
computation is performed based on Bragg’s rule and the chemical factor for the compound is taken into account;

* if there are no data for the compound, the computation is performed based on Bragg’s rule.

In the review [ZM88] the parametrisation stopping power data are presented as

f(Ty) Sexp(125 keV)
f(125 Z‘BV) (ngl;g(m keV) 1)} ) (12.18)

Se(Tp) = SBragg(Tp) 1+
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where S.;, (125 keV) is the experimental value of the energy loss for the compound for 125 keV protons or the reduced
experimental value for He ions, Sprqgq(7}) is a value of energy loss calculated according to Bragg’s rule, and f(7},)
is a universal function, which describes the disappearance of deviations from Bragg’s rule for higher kinetic energies
according to:

1

1+ exp [ 148( 5055205 — 7.0)

f(Ty) ; (12.19)

where 3(T),) is the relative velocity of the proton with kinetic energy 7T,.

Table 12.4: Stopping Power Compounds Paremeterized vs. Energy

Number | Chemical formula

1 AlO

C,0

CHy4
(C,Hy)n-Polyethylene
(C,Hy)n-Polypropylene
CgHg)n

CsHg

SiO,

H,O

H,O-Gas

Graphite

—| =[O 00| | || K| W

—|
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Table 12.5: Stopping Power Compounds Data for Fixed Energy

Number | Chemical formula | Number | Chemical formula
1 H,0 28 C,Hg

2 C,H,0 29 C,F¢

3 C3HgO 30 C,HgO

4 C,H, 31 C3H¢O

5 CH;0H 32 C4H;(O

6 C,Hs;OH 33 CoH,

7 C;H;0H 34 C,H,0

8 Cs3H, 35 CoH,4S

9 NH; 36 SH,

10 CisHjo 37 CH,4

11 C¢Hg 38 CCLF;

12 C4Hyg 39 CCLF,

13 C4Hg 40 CHCL,F

14 C4HzO 41 (CH3),S

15 CCly 42 N,O

16 CF, 43 CsH;(O

17 CeHg 44 CgHg

18 CgH1» 45 (CHo)n

19 CgH;(O 46 (C3He)n

20 CeHio 47 (CgHg)n

21 CgHig 48 C3;Hg C_3H_8
22 CsHyg 49 C3;Hg-Propylene
23 CsHg 50 C3H¢O

24 C3;Hg-Cyclopropane | 51 C3HgS

25 C,H4F, 52 C4H4S

26 C,H,F, 53 C;7Hg

27 C4HgO,

12.2.3 Fluctuations of energy losses of hadrons

The total continuous energy loss of charged particles is a stochastic quantity with a distribution described in terms of a
straggling function. The straggling is partially taken into account by the simulation of energy loss by the production of
d-electrons with energy T' > T,.. However, continuous energy loss also has fluctuations. Hence in the current GEANT4
implementation two different models of fluctuations are applied depending on the value of the parameter « which is
the lower limit of the number of interactions of the particle in the step. The default value chosen is x = 10. To select
a model for thick absorbers the following boundary conditions are used:

AE >T.k or T, < Ik, (12.20)

where A F is the mean continuous energy loss in a track segment of length s, T is the kinetic energy cut of §-electrons,
and [ is the average ionisation potential of the atom.

For long path lengths the straggling function approaches the Gaussian distribution with Bohr’s variance [eal93]:

7 52
ﬁTcsf <1 -5 (12.21)
where f is a screening factor, which is equal to unity for fast particles, whereas for slow positively charged ions with
B2 <3Z(vo/c)® f=a+b/Z ff f» Where parameters a and b are parametrised for all atoms [QY91][WKC77].

02 =KN,,

For short path lengths, when the condition (12.20) is not satisfied, the model described in Energy Loss Fluctuations is
applied.
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12.2.4 ICRU 73-based energy loss model

The ICRU 73 [eal05] report contains stopping power tables for ions with atomic numbers 3-18 and 26, covering a
range of different elemental and compound target materials. The stopping powers derive from calculations with the
PASS code [SS02], which implements the binary stopping theory described in [SS02][SS00]. Tables in ICRU 73
extend over an energy range up to 1 GeV/nucleon. All stopping powers were incorporated into GEANT4 and are
available through a parameterisation model (G4lonParametrisedLossModel). For a few materials revised stopping
powers were included (water, water vapor, nylon type 6 and 6/6 from P. Sigmund et al. [PSP0O9] and copper from P.
Sigmund [PSigmund09]), which replace the corresponding tables of the original ICRU 73 report.

To account for secondary electron production above 7, the continuous energy loss per unit path length is calculated

T<Tc ICRUT3 5

where (dE/dx) ;¢ rurs refers to stopping powers obtained by interpolating ICRU 73 tables and (dE/dzx)s is the mean
energy transferred to d-electrons per path length given by

dE Tmas doy(T)
(dx>5 ;nat7z /T o Td (12.23)

where the index ¢ runs over all elements composing the material, 1, ; is the number of atoms of the element i per
volume, T, is the maximum energy transferable to an electron according to formula and do;/dT specifies the
differential cross section per atom for producing an é-electron.

d£
dx

For compound targets not considered in the ICRU 73 report, the first term on the right hand side in Eq.(12.22) is
computed by applying Bragg’s additivity rule [eal93] if tables for all elemental components are available in ICRU 73.
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CHAPTER
THIRTEEN

POLARIZED ELECTRON/POSITRON/GAMMA INCIDENT

13.1 Introduction

With the EM polarization extension it is possible to track polarized particles (leptons and photons). Special emphasis
will be put in the proper treatment of polarized matter and its interaction with longitudinal polarized electrons/positrons
or circularly polarized photons, which is for instance essential for the simulation of positron polarimetry. The imple-
mentation is base on Stokes vectors [McM61]. Further details can be found in [Lai08].

In its current state, the following polarization dependent processes are considered:
* Bhabha/Mgller scattering,
¢ Positron Annihilation,
* Compton scattering,
¢ Pair creation,
* Bremsstrahlung.

Several simulation packages for the realistic description of the development of electromagnetic showers in matter have
been developed. A prominent example of such codes is EGS (Electron Gamma Shower) [NHR85]. For this simula-
tion framework extensions with the treatment of polarized particles exist [Flottmann93a][NBH93][LKNS]; the most
complete has been developed by K. Flottmann [Flottmann93a]. It is based on the matrix formalism [McM61], which
enables a very general treatment of polarization. However, the Flottmann extension concentrates on evaluation of
polarization transfer, i.e. the effects of polarization induced asymmetries are neglected, and interactions with polarized
media are not considered.

Another important simulation tool for detector studies is Geant3 [eal85]. Here also some effort has been made to
include polarization [aal][Hoo97], but these extensions are not publicly available.

In general the implementation of polarization in this EM polarization library follows very closely the approach by
K. Fléttmann [Flottmann93a]. The basic principle is to associate a Stokes vector to each particle and track the mean
polarization from one interaction to another. The basics for this approach is the matrix formalism as introduced in
[McM61].
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13.1.1 Stokes vector

The Stokes vector [Sto52][McM61] is a rather simple object (in comparison to e.g. the spin density matrix), three
real numbers are sufficient for the characterization of the polarization state of any single electron, positron or photon.
Using Stokes vectors all possible polarization states can be described, i.e. circular and linear polarized photons can be
handled with the same formalism as longitudinal and transverse polarized electron/positrons.

The Stokes vector can be used also for beams, in the sense that it defines a mean polarization.

In the EM polarization library the Stokes vector is defined as follows:

Photons Electrons
&1 | linear polarization polarization in x direction
&> | linear polarization but /4 to right | polarization in y direction
&3 | circular polarization polarization in z direction

This definition is assumed in the particle reference frame, i.e. with the momentum of the particle pointing to the z
direction, cf. also next section about coordinate transformations. Correspondingly a 100% longitudinally polarized
electron or positron is characterized by

0
0
+1

3

)

where £1 corresponds to spin parallel (anti parallel) to particle’s momentum. Note that this definition is similar, but
not identical to the definition used in McMaster [McM61].

Many scattering cross sections of polarized processes using Stokes vectors for the characterization of initial and final
states are available in [McMG61]. In general a differential cross section has the form

do(¢™M,¢@, g1 ¢@)
a2 ’

i.e. it is a function of the polarization states of the initial particles C(l) and ¢ ) as well as of the polarization states of
the final state particles & Y and 13 () (in addition to the kinematic variables F, 6, and o).

Consequently, in a simulation we have to account for
* Asymmetries:

* Polarization of beam ({ (1)) and target (¢ (2)) can induce azimuthal and polar asymmetries, and may also influence
on the total cross section (GEANT4: GetMeanFreePath()).

* Polarization transfer / depolarization effects

* The dependence on the final state polarizations defines a possible transfer from initial polarization to final state
particles.

13.1.2 Transfer matrix

Using the formalism of McMaster, differential cross section and polarization transfer from the initial state (¢ (1)) to
one final state particle (£ (1)) are combined in an interaction matrix 7"

0 1
(&0 )=7(c )
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where [ and O are the incoming and outgoing currents, respectively. In general the 4 x 4 matrix 7" depends on the
target polarization ¢ (2) (and of course on the kinematic variables E, 6, ¢). Similarly one can define a matrix defining
the polarization transfer to second final state particle like

0 .
<s<2>>:T(c“>>'

In this framework the transfer matrix 7" is of the form

S A Aq Az

P My My Mg
Py, Mis My Mso
Py Miz Mas Mss

The matrix elements 7;; can be identified as (unpolarized) differential cross section (.5), polarized differential cross
section (A4;), polarization transfer (1/;;), and (de)polarization (£;). In the Flottmann extension the elements A; and P;
have been neglected, thus concentrating on polarization transfer only. Using the full matrix takes now all polarization
effects into account.

The transformation matrix, i.e. the dependence of the mean polarization of final state particles, can be derived from
the asymmetry of the differential cross section w.r.t. this particular polarization. Where the asymmetry is defined as
usual by
~o(+1) —o(-1)
o(+1) +o(-1) "
The mean final state polarizations can be determined coefficient by coefficient. In general, the differential cross section
is a linear function of the polarizations, i.e.

do(¢M,¢@ W @)

T
= O oy + A ey €YD + B oy €P + €D My ey €P)

dQ)
In this form, the mean polarization of the final state can be read off easily, and one obtains
(W) = L A @) and
D¢ c) ’
1
T - | :
(&) (I)(C“hcm) (¢ ,c@)

Note that the mean polarization states do not depend on the correlation matrix M ) ¢(»)). In order to account for
correlation one has to generate single particle Stokes vector explicitly, i.e. on an event by event basis. However, this
implementation generates mean polarization states, and neglects correlation effects.

13.1.3 Coordinate transformations

Three different coordinate systems are used in the evaluation of polarization states:

* World frame The geometry of the target, and the momenta of all particles in GEANT4 are noted in the world
frame X, Y, Z (the global reference frame, GRF). It is the basis of the calculation of any other coordinate
system.

« Particle frame Each particle is carrying its own coordinate system. In this system the direction of motion
coincides with the z-direction. GEANT4 provides a transformation from any particle frame to the World frame
by the method G4ThreeMomemtum: : rotateUz (). Thus, the y-axis of the particle reference frame (PRF)
lies in the X -Y -plane of the world frame.

The Stokes vector of any moving particle is defined w.r.t. the corresponding particle frame. Particles at rest
(e.g. electrons of a media) use the world frame as particle frame.
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electron \ z
X

Fig. 13.1: The interaction frame and the particle frames for the example of Compton scattering. The momenta
of all participating particle lie in the x-z-plane, the scattering plane. The incoming photon gives the z direction.
The outgoing photon is defined as particle I and gives the z-direction, perpendicular to the z-axis. The y-axis is
then perpendicular to the scattering plane and completes the definition of a right handed coordinate system called
interaction frame. The particle frame is defined by the GEANT4 routine G4ThreeMomemtum::rotateUz().

¢ Interaction frame For the evaluation of the polarization transfer another coordinate system is used, defined
by the scattering plane, cf. Fig. 13.1. There the z-axis is defined by the direction of motion of the incoming
particle. The scattering plane is spanned by the z-axis and the z-axis, in a way, that the direction of particle 1
has a positive  component. The definition of particle 1 depends on the process, for instance in Compton
scattering, the outgoing photon is referred as particle 1'.

All frames are right handed.

13.1.4 Polarized beam and material

Polarization of beam particles is well established. It can be used for simulating low-energy Compton scattering of
linear polarized photons. The interpretation as Stokes vector allows now the usage in a more general framework. The
polarization state of a (initial) beam particle can be fixed using the standard ParticleGunMessenger class. For example,
the class G4ParticleGun provides the method SetParticlePolarization(), which is usually accessible via:

/gun/polarization <Sx> <Sy> <Sz>

in a macro file.

In addition for the simulation of polarized media, a possibility to assign Stokes vectors to physical volumes is provided
by a new class, the so-called G4PolarizationManager. The procedure to assign a polarization vector to a media, is done
during the detector construction. There the logical volumes with certain polarization are made known to polarization
manager. One example DetectorConstruction might look like follows:

G4double Targetthickness = .010+mm;
G4double Targetradius = 2.5%mm;

G4Tubs+* solidTarget =
new G4Tubs ("solidTarget",
0.0,
Targetradius,
Targetthickness/2,
0.0xdeg,
360.0xdeg );

(continues on next page)

! Note, for an incoming particle travelling on the Z-axis (of GRF), the y-axis of the PRF of both outgoing particles is parallel to the y-axis of
the interaction frame.
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(continued from previous page)

G4LogicalVolume % logicalTarget =
new G4LogicalVolume (solidTarget,
iron,
"logicalTarget",
0,0,0);

G4VPhysicalVolume * physicalTarget =
new G4PVPlacement (0,G4ThreeVector (0.+mm, O.*mm, O.xmm),
logicalTarget,
"physicalTarget",
worldLogical,
false,
0);

G4PolarizationManager * polMgr = G4PolarizationManager::GetInstance () ;
polMgr—->SetVolumePolarization(logicalTarget, G4ThreeVector(0.,0.,0.08));

Once a logical volume is known to the G4PolarizationManager, its polarization vector can be accessed from a macro
file by its name, e.g. the polarization of the logical volume called “logicalTarget” can be changed via:

’/polarization/volume/set logicalTarget 0. 0. -0.08

Note, the polarization of a material is stated in the world frame.

13.2 lonisation

13.2.1 Method

The class G4ePolarizedlonization provides continuous and discrete energy losses of polarized electrons and positrons
in a material. It evaluates polarization transfer and — if the material is polarized — asymmetries in the explicit delta
rays production. The implementation baseline follows the approach derived for the class G4elonization described in
Mean Energy Loss and lonisation. For continuous energy losses the effects of a polarized beam or target are negligible
provided the separation cut Tt is small, and are therefore not considered separately. On the other hand, in the explicit
production of delta rays by Mgller or Bhabha scattering, the effects of polarization on total cross section and mean free
path, on distribution of final state particles and the average polarization of final state particles are taken into account.

13.2.2 Total cross section and mean free path

Kinematics of Bhabha and Mgller scattering is fixed by initial energy

5= 2

mc?
and variable

2
c— E,, —mc
Ey, —mc?’
which is the part of kinetic energy of initial particle carried out by scatter. Lower kinematic limit for € is 0, but in order
to avoid divergences in both total and differential cross sections one sets
Tmin

€min = T = e’

Ly

where T),,;,, has meaning of minimal kinetic energy of secondary electron. And, €y.x = 1(1/2) for Bhabha(Mgller)
scatterings.

1
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Total Mgller cross section

The total cross section of the polarized Mgller scattering can be expressed as follows

2my°re (0@, (@ 4 (D
M _ e ]M
Upol - (7_1)2(74_1) |: +<3 C ( +C2 C2 ) } )

where the 7, is classical electron radius, and

1 1 (v=1%/1 2— 4y l1—=z
M
=— — - In
% l—er:c ~2 2 7 + 272 x

M (-34+27+72) (1-22) Jr2'y(—1+2'y) 1n<1x>

9L = 272 22 T
w_2G-Der-1) -3y (1-a
T 272 272 T

Total Bhabha cross section

The total cross section of the polarized Bhabha scattering can be expressed as follows

2mr?
o, = — {U(?JFC;)C@) B <<§1>C£2>+<21)C<2>) }

1
where
B 1—=x 2 (-1432—62%+42%)
oy = +
2(yv-1 = 3(147)°
—1—5$+12z2—10x3+4x4+—3—$+8x2—4z3—ln(x)
2(1+7) = (1+7)°
3+4xf9x +32% —2* + 62 In(z)
3z
p 2(1—-3x+62>—42%) —14+152—32%+22° — 9 In(z)
op = 3 +
3(1+7) 3(1+7)
543z —1222+423+3In(z) 7-9x+32%—2°+6 In(x)
3(147)° * 3
5 2(-1+32—-62>+42°%) —7-32+1822 82" —3In(x)
T 3(1+)° 3(1+7)°
543z — 1222 + 423+ 9 In(z)
6 (1+7)

Mean free path

With the help of the total polarized Mgller cross section one can define a longitudinal asymmetry A} and the trans-
verse asymmetry A by

M

o
AM L
L M
=)
and
M
AM or

M"
=)
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Similarly, using the polarized Bhabha cross section one can introduce a longitudinal asymmetry AZ and the transverse
asymmetry AZ via

B
AB_UL
L_O'B
0
and
B
ABiaT
T — B
)

These asymmetries are depicted in Fig. 13.2, Fig. 13.3 for Mgller and Fig. 13.4, Fig. 13.5 for Bhabha.

If both beam and target are polarized the mean free path as defined in lonisation has to be modified. In the class
G4ePolarizedlonization the polarized mean free path AP°! is derived from the unpolarized mean free path \"*P°! via

/\unpol

1+ 06 A+ (Ve + 06 A

pol

A7, % (a)

0.6 0.8 W

Ein, MeV

Fig. 13.2: Mgller total cross section asymmetries depending on the total energy of the incoming electron, with a cut-off
Teut = 1 keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Between 0.5 MeV and 2 MeV.

Ein, MeV
0

Fig. 13.3: Mgller total cross section asymmetries depending on the total energy of the incoming electron, with a cut-off
T.ut = 1keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Up to 10 MeV.
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ALr, % (a)

Ein, MeV
0.6 0.8 1.2 1.4 1.6 1.8

_—

Fig. 13.4: Bhabha total cross section asymmetries depending on the total energy of the incoming positron, with a
cut-off T,y = 1keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Between 0.5 MeV and
2 MeV.

Ar,T,% (b)
- Ein, MeV
12

Fig. 13.5: Bhabha total cross section asymmetries depending on the total energy of the incoming positron, with a
cut-off 7., = 1keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Up to 10 MeV.
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13.2.3 Sampling the final state
Differential cross section

The polarized differential cross section is rather complicated. The full result can be found in [eal][FM57][Ste58]. In
G4PolarizedMollerCrossSection the complete result is available taking all mass effects into account, with only binding
effects neglected. Here we state only the ultra-relativistic approximation (URA), to show the general dependencies.

M 2
dJURA o Te

dedp v+1 X

W) _ @@\ L=e+2€ @) .1) _1)@)2-3c+2e
@6 6767 g (8767 - 67) 11—

2
(l-e+e)” )y, @2—€cté MA@ 1)@\ 1
)+ <<2 CQ - 1 )4

4(e—1)%e P (1 ! 4

The corresponding cross section for Bhabha cross section is implemented in G4PolarizedBhabhaCrossSection. In the
ultra-relativistic approximation it reads

o 4e2 de 4

2
dofipa _ 1 (L=t e)  le=D 2-cte) (6896 - ¢¢?) (1-¢)?
dedp S —1 3 63 2 G2 1°61

1—-2e+3e2-2¢ 2 —3e+ 26
+ (67! - 7¢”) + (6¢) — eIy T

4¢e? 4e

where

Te classical electron radius

v By, [mec?

€ (Ep, —mec?)/(Ey, —mec?)

By, energy of the incident electron/positron

B, energy of the scattered electron/positron

mec® | electron mass

¢ M Stokes vector of the incoming electron/positron

¢ @ Stokes vector of the target electron

13 M Stokes vector of the outgoing electron/positron

13 @) Stokes vector of the outgoing (2nd) electron .
Sampling

The delta ray is sampled according to methods discussed in Section 2. After exploitation of the symmetry in the
Moller cross section under exchanging e versus (1 — €), the differential cross section can be approximated by a simple
function fM (e):

1 €
Miy_ - _ ©
f (6)_ 621—260
with the kinematic limits given by
_ Tcut <e< 1
0= Ey, — mec? =€=3

A similar function £ (€) can be found for Bhabha scattering:

1 €0

fPe) =

e21—¢
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with the kinematic limits given by

Tcut

— < e<1
Ey, —mec® = T

€0 —

The kinematic of the delta ray production is constructed by the following steps:
1. eis sampled from f(e)
2. calculate the differential cross section, depending on the initial polarizations ¢ ) and ¢ @),

3. eis accepted with the probability defined by ratio of the differential cross section over the approximation func-
tion.

4. The ¢ is diced uniformly.
5. is determined from the differential cross section, depending on the initial polarizations C(l) and C(Q)

Note, for initial states without transverse polarization components, the  distribution is always uniform. In Fig. 13.6
and Fig. 13.7 the asymmetries indicate the influence of polarization. In general the effect is largest around € = 1/2.

A% Moller asymmetries

-20

-40

-60

-80

Fig. 13.6: Differential cross section asymmetries in % for Mgller scattering (red - Az z(¢), green - Ax x (¢€), blue -
Ayy(e), llght blue - Az x (6))

A% Bhabha asymmetries
—
——
U2 0.4 0.6 0.9 1
-20
-40
-60
-80

Fig. 13.7: Differential cross section asymmetries in % for Bhabha scattering (red - Azz(¢), green - Ax x (¢€), blue -
Ayy (6), light blue - Az x (6))

After both ¢ and € are known, the kinematic can be constructed fully. Using momentum conservation the momenta of
the scattered incident particle and the ejected electron are constructed in global coordinate system.

176 Chapter 13. Polarized Electron/Positron/Gamma Incident



Physics Reference Manual, Release 10.7

Polarization transfer

After the kinematics is fixed the polarization properties of the outgoing particles are determined. Using the dependence
of the differential cross section on the final state polarization a mean polarization is calculated according to method
described in Introduction.

The resulting polarization transfer functions 5;1’2) (€) are depicted in Fig. 13.8, Fig. 13.9, and Fig. 13.10, Fig. 13.11.

T Beam P=1 <> Target P=1
1

0.75
0.5
0.25

-0.25
-0.5

Fig. 13.8: Polarization transfer functions in Mgller scattering. Longitudinal polarization fém of electron with energy

E,, in blue; longitudinal polarization 55(51) of second electron in red. Kinetic energy of incoming electron T}, =
10MeV

T Beam P=1 <> Target P=-1

Fig. 13.9: Polarization transfer functions in Mgller scattering. Longitudinal polarization §§2) of electron with energy

E,, in blue; longitudinal polarization §§1) of second electron in red. Kinetic energy of incoming electron T}, =
10MeV

13.3 Positron - Electron Annihilation

13.3.1 Method

The class G4eplusPolarizedAnnihilation simulates annihilation of polarized positrons with electrons in a material.
The implementation baseline follows the approach derived for the class G4eplusAnnihilation described in Positron -
Electron Annihilation. It evaluates polarization transfer and — if the material is polarized — asymmetries in the produced
photons. Thus, it takes the effects of polarization on total cross section and mean free path, on distribution of final
state photons into account. And calculates the average polarization of these generated photons. The material electrons
are assumed to be free and at rest.
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T Beam P = 1 <> Target P = 1

0.5

0.25

-0.25
-0.5

Fig. 13.10: Polarization Transfer in Bhabha scattering. Longitudinal polarization £§2) of electron with energy £, in

blue; longitudinal polarization fgl) of scattered positron. Kinetic energy of incoming positron 7},

T Beam P = 1 <> Target P = -1
1
0.8
0.6
0.4
0.2
€
0.2 0.4 0.6 0.8 1

= 10MeV

Fig. 13.11: Polarization Transfer in Bhabha scattering. Longitudinal polarization §§2) of electron with energy £, in

blue; longitudinal polarization fél) of scattered positron. Kinetic energy of incoming positron T},

13.3.2 Total cross section and mean free path

Kinematics of annihilation process is fixed by initial energy

v = B,
me2
and variable
€ = lzpl
Ex, +mc?’

= 10MeV

which is the part of total energy available in initial state carried out by first photon. This variable has the following

kinematical limits

1 [vy—1 1 [v—1
-1 -/ — — (1 — .
2( 7+1)<6<2(+ 7—1—1)
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Total Cross Section

The total cross section of the annihilation of a polarized e™e™ pair into two photons could be expressed as follows

72
o= 2 (o + Ot + (06 + ) o],

y+1
where
= ZBFN VL2 (4 y (7)) Iy + V149
4(v-1)
A V1 +2 GBHY A3+ B+ (T+7+92) In(y + /2 - 1)
’ 47 =1)" (1+7)
WSCE) V=142 = (1+457) In(y+ /147

4(=1+7)* (1+7)

Mean free path

With the help of the total polarized annihilation cross section one can define a longitudinal asymmetry A4 and the

transverse asymmetry A%, by

A

AA _ oy,

L — _A

90

and

A

AL — or
T= "A-

0y

These asymmetries are depicted in Fig. 13.12, Fig. 13.13.

If both incident positron and target electron are polarized the mean free path as defined in section Positron - Electron
Annihilation has to be modified. The polarized mean free path A\P°! is derived from the unpolarized mean free path

)\unpol via
Aol — unpol
14+ ¢ A+ (¢ + 0¢?) ar
Az, % (a)
2 3 6 v
-20
-40
-60
-80
-100

Fig. 13.12: Annihilation total cross section asymmetries depending on the total energy of the incoming positron Ey, .
The transverse asymmetry is shown in blue, the longitudinal asymmetry in red.
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Ar,r,% (b)

30
20

10

Y
10 15 20 25 30 35 40
-10

Fig. 13.13: Annihilation total cross section asymmetries depending on the total energy of the incoming positron Ey, .
The transverse asymmetry is shown in blue, the longitudinal asymmetry in red.

13.3.3 Sampling the final state
Differential Cross Section

The fully polarized differential cross section is implemented in the class G4PolarizedAnnihilationCrossSection, which
takes all mass effects into account, but binding effects are neglected [eal][Pag57]. In the ultra-relativistic approxima-
tion (URA) and concentrating on longitudinal polarization states only the cross section is rather simple:

_ D) (6 - )
dofipa T2 (12e+262 (1+C§1)C3(2)> N (1—2¢) ( 3 tG 3 3 )

X
dedp v—1 8e—8¢2 8(e—1)e€

where

Te classical electron radius

v Ey, [mec?

By, energy of the incident positron

mec? | electron mass

M Stokes vector of the incoming positron

¢ @) Stokes vector of the target electron

13 @ Stokes vector of the 1st photon

13 @) Stokes vector of the 2nd photon .
Sampling

The photon energy is sampled according to methods discussed in Section 2. After exploitation of the symmetry in the
Annihilation cross section under exchanging e versus (1 — €), the differential cross section can be approximated by a

simple function f(e):
1 —1 €max
= — 1 _—
f(E) € " ( €min )

1 v—1
€min = 3 1- 1 ’

2 v+1

1 [v—1
max — o 1 - .
‘ 2( ’ 7+1>

The kinematic of the two photon final state is constructed by the following steps:

with the kinematic limits given by
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1. eis sampled from f(e)
2. calculate the differential cross section, depending on the initial polarizations ¢ M) and ¢ @),

3. e is accepted with the probability defined by the ratio of the differential cross section over the approximation
function f(e).

4. The ¢ is diced uniformly.
5.  is determined from the differential cross section, depending on the initial polarizations ¢ 1) and C(2).

A short overview over the sampling method is given in Section 2. In Fig. 13.14 the asymmetries indicate the influence
of polarization for an 10MeV incoming positron. The actual behavior is very sensitive to the energy of the incoming
positron.

A% Annihilation asymmetries
75
50
25

-25
-50
-75

-100

Fig. 13.14: Annihilation differential cross section asymmetries in %. Red line corrsponds to Azz(¢), green line —
Axx(€), blue line — Ayy (e€), lightblue line — Az x (¢)). Kinetic energy of the incoming positron T3, = 10MeV.

Polarization transfer

After the kinematics is fixed the polarization of the outgoing photon is determined. Using the dependence of the
differential cross section on the final state polarizations a mean polarization is calculated for each photon according to
method described in section Introduction.

The resulting polarization transfer functions £(12) (¢) are depicted in Fig. 13.15, Fig. 13.16.

T Beam P = 1 <> Target P = 1
1

Fig. 13.15: Polarization Transfer in annihilation process. Blue line corresponds to the circular polarization fél) of the
photon with energy m(+y + 1)¢; red line — circular polarization £§2) of the photon photon with energy m(y+1)(1 —¢).
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T Beam P = 1 <> Target P = -1

Fig. 13.16: Polarization Transfer in annihilation process. Blue line corresponds to the circular polarization §§1) of the
photon with energy m(+ + 1)¢; red line — circular polarization §§2) of the photon photon with energy m(y+1)(1—¢).

13.3.4 Annihilation at Rest

The method AtRestDoIt treats the special case where a positron comes to rest before annihilating. It generates
two photons, each with energy Ey, ,, = mc? and an isotropic angular distribution. Starting with the differential cross
section for annihilation with positron and electron spins opposed and parallel, respectively, [Pag57]

(1-5%) +p2(1 — B?)(1 — cos®0)?
(1= 2%cos?0)?

B2(1 — cos* 0)

(1 —B2cos?6)?

dcosf

do’l =V

dog =~ dcosf

In the limit 8 — O the cross section do; becomes one, and the cross section doy vanishes. For the opposed spin
state, the total angular momentum is zero and we have a uniform photon distribution. For the parallel case the total
angular momentum is 1. Here the two photon final state is forbidden by angular momentum conservation, and it can
be assumed that higher order processes (e.g. three photon final state) play a dominant role. However, in reality 100%
polarized electron targets do not exist, consequently there are always electrons with opposite spin, where the positron
can annihilate with. Final state polarization does not play a role for the decay products of a spin zero state, and can be
safely neglected (is set to zero).

13.4 Polarized Compton scattering

13.4.1 Method

The class G4PolarizedCompton simulates Compton scattering of polarized photons with (possibly polarized) electrons
in a material. The implementation follows the approach described for the class G4ComptonScattering introduced in
Compton scattering. Here the explicit production of a Compton scattered photon and the ejected electron is considered
taking the effects of polarization on total cross section and mean free path as well as on the distribution of final state
particles into account. Further the average polarizations of the scattered photon and electron are calculated. The
material electrons are assumed to be free and at rest.

182 Chapter 13. Polarized Electron/Positron/Gamma Incident



Physics Reference Manual, Release 10.7

13.4.2 Total cross section and mean free path

Kinematics of the Compton process is fixed by the initial energy

— Ekl

X =
mc?

and the variable
Ep,
E..’

1

€ =
which is the part of total energy available in initial state carried out by scattered photon, and the scattering angle
1 /1
0=1—-—=(--1
cos X (6 >
The variable € has the following limits:

<e<l1

1+2X

Total Cross Section

The total cross section of Compton scattering reads

TTe?

o 06 + (Pt

Pl X2 (14 2X)2
where

¢ 2X(2+X(1+X)B8+X)-(1+2X)> 2+ (2—-X) X) In(1 +2X)
Og = X

and

0¥ =2X 1+X 445X)—(1+X) 1+2X)* In(1+2X)

C
AT, % (a)

Fig. 13.17: Compton total cross section asymmetry depending on the energy of incoming photon. Between 0 and ~ 1
MeV.

13.4. Polarized Compton scattering 183



Physics Reference Manual, Release 10.7

Cc o
A% % (b)

-10

-15

-20

-25

-30

-35

Fig. 13.18: Compton total cross section asymmetry depending on the energy of incoming photon. Up to 10MeV.

Mean free path

When simulating the Compton scattering of a photon with an atomic electron, an empirical cross section formula is
used, which reproduces the cross section data down to 10 keV (see Compton scattering). If both beam and target are
polarized this mean free path has to be corrected.

In the class G4ComptonScattering the polarized mean free path AP°! is defined on the basis of the the unpolarized
mean free path A\""P°! via

)\pol _ )\unpol
1+¢§0¢® A¢
where
A
AS =L
L 064

is the expected asymmetry from the the total polarized Compton cross section given above. This asymmetry is depicted
in Fig. 13.17, Fig. 13.18.

13.4.3 Sampling the final state

Differential Compton Cross Section

In the ultra-relativistic approximation the dependence of the differential cross section on the longitudinal/circular
degree of polarization is very simple. It reads

dO’gRA _ Te2 62—|—1 62—1 (1) (2) (2) (1) (1) (2) €2+1 (1) (1) (2) (2)
ded<p_X 2¢ + 2¢ (CSCS +G7 8 — G 3)4‘276(3 30 — (3 fg)

where

Te classical electron radius

X By, /mec?

Ey, energy of the incident photon
mec® | electron mass

The fully polarized differential cross section is available in the class G4PolarizedComptonCrossSection. It takes all
mass effects into account, but binding effects are neglected [eal][LT54a][LT54b]. The cross section dependence on €
for right handed circularly polarized photons and longitudinally polarized electrons is plotted in Fig. 13.19, Fig. 13.20.
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d?o¢
dedg Compton cross section

O Y ©® O

Fig. 13.19: Compton scattering differential cross section in arbitrary units. Black line corresponds to the unpolarized
cross section; red line — to the antiparallel spins of initial particles, and blue line — to the parallel spins. Energy of the
incoming photon Ej,, = 10MeV.

Compton asymmetries
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Fig. 13.20: Compton scattering differential cross section asymmetries in%. Red line corresponds to the asymmetry due
to circular photon and longitudinal electron initial state polarization, green line — due to circular photon and transverse
electron initial state polarization, blue line — due to linear photon and transverse electron initial state polarization.
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Sampling

The photon energy is sampled according to methods discussed in Section 2. The differential cross section can be
approximated by a simple function ®(e):

Ple) =—+e¢
with the kinematic limits given by
B 1
fmin T 19X
€max = 1

The kinematic of the scattered photon is constructed by the following steps:
1. €is sampled from ®(e)

2. calculate the differential cross section, depending on the initial polarizations ¢ (1) and ¢ ) which the correct
normalization.

3. eis accepted with the probability defined by ratio of the differential cross section over the approximation func-
tion.

4. The ¢ is diced uniformly.
5. ¢ is determined from the differential cross section, depending on the initial polarizations ¢ 1) and C(Q).

In Fig. 13.19, Fig. 13.20 the asymmetries indicate the influence of polarization for an 10 MeV incoming positron. The
actual behavior is very sensitive to energy of the incoming positron.

Polarization transfer

After the kinematics is fixed the polarization of the outgoing photon is determined. Using the dependence of the
differential cross section on the final state polarizations a mean polarization is calculated for each photon according to
the method described in section /ntroduction.

The resulting polarization transfer functions £(*2) (¢) are depicted in Fig. 13.21, Fig. 13.22.

Y: Circ=1, e : POL=1

-1

Fig. 13.21: Polarization Transfer in Compton scattering. Blue line corresponds to the longitudinal polarization §§2) of
the electron, red line — circular polarization 55(51) of the photon.
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Y: Circ=-1, e : POL=0

Fig. 13.22: Polarization Transfer in Compton scattering. Blue line corresponds to the longitudinal polarization £§2) of
the electron, red line — circular polarization §§1) of the photon.

13.5 Polarized Bremsstrahlung for electron and positron

13.5.1 Method

The polarized version of Bremsstrahlung is based on the unpolarized cross section. Energy loss, mean free path, and
distribution of explicitly generated final state particles are treated by the unpolarized version G4eBremsstrahlung. For
details consult Bremsstrahlung.

The remaining task is to attribute polarization vectors to the generated final state particles, which is discussed in the
following.

13.5.2 Polarization in gamma conversion and bremsstrahlung

Gamma conversion and bremsstrahlung are cross-symmetric processes (i.e. the Feynman diagram for electron
bremsstrahlung can be obtained from the gamma conversion diagram by flipping the incoming photon and outgo-
ing positron lines) and their cross sections closely related. For both processes, the interaction occurs in the field of
the nucleus and the total and differential cross section are polarization independent. Therefore, only the polarization
transfer from the polarized incoming particle to the outgoing particles is taken into account.

Y k

g

NI N2 N1 N2

Gamma conversion Bremsstrahlung

Fig. 13.23: Feynman diagrams of Gamma conversion and bremsstrahlung processes.
For both processes, the scattering can be formulated by:
K (kr, €M) + Ny (en, , €M) — Pr(p1, €9) + Pa(p2,€7)) + Na(pa, €97)

Where NV (kar,, ¢ W 1)) and Na(pys,, € W 2)) are the initial and final state of the field of the nucleus respectively as-
sumed to be unchanged, at rest and unpolarized. This leads to kn;, = ka, = 0 and ¢ W) = 13 W2) —
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In the case of gamma conversion process: Kq(k1, ¢ (1)) is the incoming photon initial state with momentum k; and
polarization state ¢ P, (p1, 5(1)) and Pz (p2, 5(2)) are the two photons final states with momenta p; and ps and
polarization states & 1) and 13 @,

In the case of bremsstrahlung process: K1 (ky, (") is the incoming lepton e~ (') initial state with momentum k,
and polarization state W, P1(p1,& (1)) is the lepton e~ (e™) final state with momentum p; and polarization state & @,
Pa(p2, & (2)) is the bremsstrahlung photon in final state with momentum p- and polarization state & @),

13.5.3 Polarization transfer from the lepton e*e” to a photon

The polarization transfer from an electron (positron) to a photon in a bremsstrahlung process was first calculated by
Olsen and Maximon [OM59] taking into account both Coulomb and screening effects. In the Stokes vector formalism,
the e~ (e™) polarization state can be transformed to a photon polarization finale state by means of interaction matrix

T,ly’. It defined via
O 1
(é0)=m (b ) a2

and
1 00 0
s | D 0 0 0
=% 00 0 |- (13.2)
0 T 0 L
where
I=(+€e)(3+2D) — 26165(1 + 4u2€2D)
D= {86162u2ézf} /1
. . (13.3)
T = {—41%25(1 - 2§)UF} /T
L = k{(e1 + €2)(3 + 2I) — 2ea(1 + 4u2€?T)} /1
and

Total energy of the incoming lepton e (e~ ) in units mc?

Total energy of the outgoing lepton e* (e~ ) in units mc?

= (€1 — €2), the energy of the bremsstrahlung photon in units of mc?
Electron (positron) initial momentum in units mc

Bremsstrahlung photon momentum in units mc

Component of p perpendicular to k in units mc and u = |u)|

—1/(1+u?)

Cat N~ Il e~ B Il Ral sy

Coulomb and screening effects are contained in I', defined as follows

F:ln<(15> —2—f(Z)+]-'<§> for A <120

I'=In (}111) —2—f(2) forA>120
ézt
with

1273 €160 k
A= 1;716]1;25 with Z the atomic number and § = 5,2
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f(Z) is the Coulomb correction term derived by Davies, Bethe and Maximon [eal54]. F (é /9) contains the screening
effects and is zero for A < 9.5 (No screening effects). For 0.5 < A < 120 (intermediate screening) it is a slowly
decreasing function. The F(£/0) values versus A are given in Table 13.1 [KM59] and used with a linear interpolation
in between.

The polarization vector of the incoming e~ (e1) must be rotated into the frame defined by the scattering plane (x-
z-plane) and the direction of the outgoing photon (z-axis). The resulting polarization vector of the bremsstrahlung
photon is also given in this frame.

Table 13.1: F (é /0) for intermediate values of the screening factor.
A [ -F(ép)1a | -F(é9)
0.5 0.0145 | 40.0 2.00

1.0 | 0.0490 | 45.0 2.114

2.0 | 0.1400 | 50.0 2.216

4.0 | 0.3312 | 60.0 2.393

80 | 0.6758 | 70.0 2.545

15.0 | 1.126 80.0 2.676
20.0 | 1.367 90.0 2.793

25.0 | 1.564 100.0 2.897

30.0 | 1.731 120.0 3.078

35.0 | 1.875

Using Eq.(13.1) and the transfer matrix given by Eq.(13.2) the bremsstrahlung photon polarization state in the Stokes
formalism [McM54][McM61] is given by

& D
5(2) — 652) ~ 0
@) Wp 4Ot

3

13.5.4 Remaining polarization of the lepton after emitting a bremsstrahlung photon

The e (e™) polarization final state after emitting a bremsstrahlung photon can be calculated using the interac-
tion matrix le which describes the lepton depolarization. The polarization vector for the outgoing e~ (e™) is
not given by Olsen and Maximon. However, their results can be used to calculate the following transfer matrix

[Flottmann93b][Hoo097].
O 1
(e )= () a3

1

D
0 (13.5)
0

Mo o
+ oo

0
0
M
0 M+P

where
I = (2 4+ €2)(3+20) — 2e1e(1 + 4u2£7T)
F=e {4kéu(1 - 2£)r} /1
E=e {4k£u(25 - 1)r} /1
M = {41«162(1 YT 2u252r)} /1

P= {1#(1 +8D(E — 0.5)2} /I
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and

Total energy of the incoming e¥ /e~ in units mc?

Total energy of the outgoing e* /e~ in units mc?

= (€1 — €2), energy of the photon in units of mc?

Electron (positron) initial momentum in units mc

Photon momentum in units mec

gl |90

Component of p perpendicular to k in units mc and u = |u

Using Eq.(13.4) and the transfer matrix given by Eq.(13.5) the e~ (e™) polarization state after emitting a

bremsstrahlung photon is given in the Stokes formalism by

&Y M+ VB
=g )=l @
&8 M+ P)+VF

13.6 Polarized Gamma conversion into an electron—positron pair

13.6.1 Method

The polarized version of gamma conversion is based on the EM standard process G4GammaConversion. Mean free
path and the distribution of explicitly generated final state particles are treated by this version. For details consult
Gamma Conversion into e+e- Pair.

The remaining task is to attribute polarization vectors to the generated final state leptons, which is discussed in the

following.

13.6.2 Polarization transfer from the photon to the two leptons

Gamma conversion process is essentially the inverse process of bremsstrahlung and the interaction matrix is ob-
tained by inverting the rows and columns of the bremsstrahlung matrix and changing the sign of €5, cf. Polarized
Bremsstrahlung for electron and positron. It follows from the work by Olsen and Maximon [OM59] that the polariza-
tion state £(1) of an electron or positron after pair production is obtained by

o)
( €W ) =1/ ( C(l” ) (13.6)

and
1 D 0 0
» [0 0 0T
=1 00 0| (13.7)
0 0 0 L
where
I=(+e)(3+2D) + 2e165(1 + 4uET)
D = {786162%2521—‘} /I
) ) (13.8)
T = {—4k62§(1 - 2§)ur} /I
L =k{(e; — €2)(3 + 2T) + 2ea(1 + 4u2£2T)} /1
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and
€1 total energy of the first lepton et (e™) in units mc?
€2 total energy of the second lepton e~ (e™) in units mc?
k = (e1 + €2) | energy of the incoming photon in units of mc?
p electron=positron initial momentum in units mc
k photon momentum in units mc
U electron/positron initial momentum in units mc
u = |u|

Coulomb and screening effects are contained in I', defined in section Polarized Bremsstrahlung for electron and
positron.

Using Eq.(13.6) and the transfer matrix given by Eq.(13.7) the polarization state of the produced e~ (e™) is given in
the Stokes formalism by:

& GUT
5(1) — fél) ~ 0
1

13.7 Polarized Photoelectric Effect

13.7.1 Method

This section describes the basic formulas of polarization transfer in the photoelectric effect class
(G4PolarizedPhotoElectricEffect). The photoelectric effect is the emission of electrons from matter upon the
absorption of electromagnetic radiation, such as ultraviolet radiation or x-rays. The energy of the photon is completely
absorbed by the electron and, if sufficient, the electron can escape from the material with a finite kinetic energy. A
single photon can only eject a single electron, as the energy of one photon is only absorbed by one electron. The
electrons that are emitted are often called photoelectrons. If the photon energy is higher than the binding energy the
remaining energy is transferred to the electron as a kinetic energy

Eg;n =k — Bgpen
In GEANT4 the photoelectric effect process is taken into account if:
k > Bspeu

Where £ is the incoming photon energy and B, the electron binding energy provided by the class G4AtomicShells.

The polarized version of the photoelectric effect is based on the EM standard process G4PhotoElectricEffect. Mean
free path and the distribution of explicitly generated final state particles are treated by this version. For details consult
section PhotoElectric Effect.

The remaining task is to attribute polarization vectors to the generated final state electron, which is discussed in the
following.
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13.7.2 Polarization transfer

The polarization state of an incoming polarized photon is described by the Stokes vector 5 (1), The polarization transfer
to the photoelectron can be described in the Stokes formalism using the same approach as for the bremsstrahlung and
gamma conversion processes, cf. Polarized Bremsstrahlung for electron and positron and Polarized Gamma conversion
into an electron—positron pair. The relation between the photoelectron’s Stokes parameters and the incoming photon’s
Stokes parameters is described by the interaction matrix 7} derived from H. Olsen [OV58] and reviewed by H-W

McMaster [McM61]:
I Iy
()= () 129

In general, for the photoelectric effect as a two-body scattering, the cross section should be correlated with the spin
states of the incoming photon and the target electron. In our implementation the target electron is not polarized and
only the polarization transfer from the photon to the photoelectron is taken into account. In this case the cross section
of the process remains polarization independent. To compute the matrix elements we take advantage of the available
kinematic variables provided by the generic G4PhotoelectricEffect class. To compute the photoelectron spin state
(Stokes parameters), four main parameters are needed:

¢ The incoming photon Stokes vector 5 @
* The incoming photon’s energy k.

« the photoelectron’s kinetic energy E¢.  or the Lorentz factors 3 and 7.

kin

 The photoelectron’s polar angle 6 or cos 6.

The interaction matrix derived by H. Olsen [OV58] is given by:

1+D —-D 0 0
0 0 0 B

TF = 0 0 0 0 (13.10)
0 0 0 A

where

L -1
k[ lfﬁcosﬁ) ]

€ 2
A_e+1 [k’ +hcosf+ eQ(I—Bcosﬁ)}

€ . 2
B= €+ 1Bsm0 [k‘e(l —Bcost) 1}

Using Eq.(13.9) and the transfer matrix given by Eq.(13.10) the polarization state of the produced e~ is given in the
Stokes formalism by:

& ¢"B
V=1 M =] o (13.11)
& ¢ A

From equation (13.11) one can see that a longitudinally (transversally) polarized photoelectron can only be produced
if the incoming photon is circularly polarized.
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13.8 Compton Scattering by Linearly Polarized Gamma Rays - Liver-
more Model

13.8.1 The Cross Section

The quantum mechanical Klein-Nishina differential cross section for polarized photons is [Hei54]:

do 1 yhv? [hy,  hv
= —7rn—0 _
o~ 2'°

S — ] 2
hv2 | hv + hvg o @]

where O is the angle between the two polarization vectors. In terms of the polar and azimuthal angles (6, ¢) this cross
section can be written as

do 1 ,hv? [huo hv

_ 2 s 02
E = 57"0@ E—i— h]/o — 2cos ¢S1H 0:| .

13.8.2 Angular Distribution

The integration of this cross section over the azimuthal angle produces the standard cross section. The angular and
energy distribution are then obtained in the same way as for the standard process. Using these values for the polar
angle and the energy, the azimuthal angle is sampled from the following distribution [Dep03]:

P(¢p)=1-— 2%0052 o)

where @ = sin? @ and b = € + 1/e. € is the ratio between the scattered photon energy and the incident photon energy.

13.8.3 Polarization Vector

The components of the vector polarization of the scattered photon are calculated from [Dep03]:

o1 . .
€ = N (jcos@—ksin@sinqﬁ) sin 3

1

~

A 14 1.
= [Ni— stin20sin¢cos¢— Nksin@cos@cosgb] cos 3

where

N = 1/1 —sin? 6 cos2 ¢.

cos [3 is calculated from cos § = N cos 3, while cos 6 is sampled from the Klein-Nishina distribution.

The binding effects and the Compton profile are neglected. The kinetic energy and momentum of the recoil electron
are then

E-F
p;_

l

L3

2%l

el

The momentum vector of the scattered photon P:y and its polarization vector are transformed into the World coordinate
system. The polarization and the direction of the scattered gamma in the final state are calculated in the reference frame
in which the incoming photon is along the z-axis and has its polarization vector along the x-axis. The transformation
to the World coordinate system performs a linear combination of the initial direction, the initial polarization and the
cross product between them, using the projections of the calculated quantities along these axes.
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13.8.4 Unpolarized Photons

A special treatment is devoted to unpolarized photons. In this case a random polarization in the plane perpendicular to
the incident photon is selected.

13.9 Pair production by Linearly Polarized Gamma Rays - Livermore
Model

A method to study the pair production interaction of linearly polarized gamma rays at energies 50 MeV was discussed
in [DKT99]. The study of the differential cross section for pair production shows that the polarization information is
coded in the azimuthal distribution of the electron - positron pair created by polarized photons (Fig. 13.24).

Fig. 13.24: Angles occurring in the pair creation

13.9.1 Relativistic cross section for linearly polarized gamma ray

The cross section for pair production by linearly polarized gamma rays in the high energy limit using natural units
with h/2r = c=11is

. 2 2 . . . 2
o — 2aZ*rgm dEdQ+dQ_E(w E) 4 Est_ cos ¥ +(w,E)Sm0+COS (¥ +¢)
(27)2w3 |41 1—cosf_ 1—cosb;
a2 sinf_cos¥  sinf cos (¥ +¢)]°
1 1—cosf_ 1—cosf;
9 sinf_sinfy Esinfy (w—E)sinf_
— 2
v (1 —cosf_)(1—cosby) [(wE) sin@_ Esinfy T2eoso) o

with
171> = —2[E(w — E)(1 —sinf, sinf_ cos ¢ — cosf cosf_)
+wB(cosO; — 1) + w(w — E)(cosh_ — 1) +m?] .
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E is the positron energy and we have assumed that the polarization direction is along the x axis (see Fig. 13.24).

13.9.2 Spatial azimuthal distribution

Integrating this cross section over energy and polar angles yields the spatial azimuthal distribution, that was calculated
in [DKT99] using a Monte Carlo procedure.

Fig. 13.25 shows an example of this distribution for 100 MeV gamma-ray. In this figure the range of the ¢ axis is
restricted between 3.0 and 7 since it gives the most interesting part of the distribution. For angles smaller than 3.0 this
distribution monotonically decreases to zero.

16
14

12

1 do

— 10
w(Zry)* do dy

Fig. 13.25: Spatial azimuthal distribution of a pair created by 100 MeV photon

In GEANT4 the azimuthal distribution surface is parametrized in terms of smooth functions of (¢, ©) .

F(@,9) = frya(d)sin® ¢ + fo(¢) cos® .

Since both fo(¢) and f;/2(¢) are functions that rapidly vary when ¢ approaches m, it was necessary to adjust the
functions in two ranges of ¢:

1. 0 < ¢ <3.05rad.
2. 3.06rad < ¢ <,

whereas in the small range 3.05 < ¢ < 3.06 we extrapolate the two fitting functions until the intersection point is
reached.

In region 2 we used Lorentzian functions of the form
2Aw
w2 +4(¢ — z)?]

whereas for region 1 the best fitting function was found to adopt the form:

f(¢)=y0+7r

f(@) =a+dtan (bp +¢) .
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The paper [DKT99] reports the coefficients obtained in different energy regions to fit the angular distribution and their
function form as function of gamma-ray as energy reported in the Table 13.2 and Table 13.3 below.

Table 13.2: Fit for the parameter of fo(¢) function.

Parameter | Function a b c

Yo alnE —b 2.98 +0.06 T7T+04 |-

A alnE —b 1.4140.08 56+05 | -

w a+b/E+c/E3|0.015+0.001 | 95+06 [ (—2.240.1)10%
T, a+b/E+c/E3 | 3.143+£0.001 | —2.7+0.2 | (2£1)10°

Table 13.3: Fit for the parameter of f /5(¢) function.

Parameter | Function a b c
Yo alnE —b 1.854+0.07 51+04 -
A alnE—b 1.34+0.1 (6.6 £0.2)1073 | -
w a+b/E+c/E3 | 0.008+£0.002 | 12.1 £0.9 (—2.84+0.8)107
Te 3.149 - - -

13.9.3 Unpolarized Photons

A special treatment is devoted to unpolarized photons. In this case a random polarization in the plane perpendicular to
the incident photon is selected.

13.10 Pair production by Linearly Polarized Gamma Rays - Five-
dimensional (5D) Bethe-Heitler Model

The G4BetheHeitler5SDModel described in Section 6.5.4 can generate the conversion of either linearly polarized pho-
tons or non-polarized photons. The performance is compared to that of other models in [GB17]. If the optimal estimate
of the event azimuthal angle is used, that is, the bisector ¢4 = (¢4 + ¢—)/2 of the electron azimuthal angle ¢_
and of the positron azimuthal angle ¢ [GB17a], the G4BetheHeitlerSDModel is the only physics model with which
the polarization asymmetry of nuclear conversion is verified to be compatible with the low-energy [GB17a] and with
the high-energy [BP71] asymptotic expressions, that have been obtained from partial integration of the Bethe-Heitler
differential cross section.

As expected (eg. from [May51][OM59]), the electron and the positron are preferentially emitted in the polarization
plane (if azimuthal angles are measured from the polarization plane, the single-lepton azimuthal angles ¢_ and ¢
take their maximum at zero). Accordingly, the bisector ¢ _ and the recoil azimuthal angle ¢, take their maximum at
+7/2.

The polarization asymmetry is optimally extracted from the average value of a weight computed from the azimuthal
angle of the event [Ber13a][GB17a].

See also the extended electromagnetic example TestEml5.
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CHAPTER
FOURTEEN

X-RAY PRODUCTION

14.1 Transition radiation

14.1.1 The Relationship of Transition Radiation to X-ray Cerenkov Radiation

X-ray transition radiation (XTR) occurs when a relativistic charged particle passes from one medium to another of
a different dielectric permittivity. In order to describe this process it is useful to begin with an explanation of X-ray
Cerenkov radiation, which is closely related.

The mean number of X-ray Cerenkov radiation (XCR) photons of frequency w emitted into an angle 6 per unit distance
along a particle trajectory is [GriO2b]:

PNper

)
el dedd® — whe ! 2} (4D

Here the quantity Z is introduced as the complex formation zone of XCR in the medium:

w2 -
72+ L+ 62
w

L c
L=~— 2

T >
12
iy

Z= , =1 (14.2)

with [ and w,, the photon absorption length and the plasma frequency, respectively, in the medium. For the case of
a transparent medium, ! — oo and the complex formation zone reduces to the coherence length L of XCR. The
coherence length roughly corresponds to that part of the trajectory in which an XCR photon can be created.

Introducing a complex quantity Z with its imaginary part proportional to the absorption cross-section (~ [~1) is
required in order to account for absorption in the medium. Usually, wf, Jw? > c/wl. Then it can be seen from Egs.
(14.1) and (14.2) that the number of emitted XCR photons is considerably suppressed and disappears in the limit of a
transparent medium. This is caused by the destructive interference between the photons emitted from different parts
of the particle trajectory.

The destructive interference of X-ray Cerenkov radiation is removed if the particle crosses a boundary between two
media with different dielectric permittivities, €, where

2
w . C
e=1-——+i—.
w

Here the standard high-frequency approximation for the dielectric permittivity has been used. This is valid for energy
transfers larger than the K -shell excitation potential.

If layers of media are alternated with spacings of order L, the X-ray radiation yield from a trajectory of unit length can
be increased by roughly /L times. The radiation produced in this case is called X-ray transition radiation (XTR).
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14.1.2 Calculating the X-ray Transition Radiation Yield

Using the methods developed in Ref.[Gri02b] one can derive the relation describing the mean number of XTR photons
generated per unit photon frequency and 62 inside the radiator for a general XTR radiator consisting of n different
absorbing media with fluctuating thicknesses:

d?N;, a n—-1 n—1 k-1 k
= Wt S (i~ Zin P23 Y (- Zi) | [ Fi| (2 - Zi) s
i=1 k=1 i=1 j=it1

t .
F, = -1 1.
IR { QZj]
In the case of gamma distributed gap thicknesses (foam or fiber radiators) the values F;, (j = 1, 2) can be estimated

as:

. vi—1 .
e v\t vjt; t t; v
F-:/ dt-(.ﬂ) J exp{lji]}[lJri J } ,
J 0 J tj F(VJ) tj QZJ 2Z]V]

where Z; is the complex formation zone of XTR (similar to relation (14.2) for XCR) in the j-th medium
[Gri02a][eal00]. T is the Euler gamma function, ¢, is the mean thickness of the j-th medium in the radiator and v; > 0
is the parameter roughly describing the relative fluctuations of ¢;. In fact, the relative fluctuation is dt; /t; ~ 1/ NZT

In the particular case of n foils of the first medium (77, F}) interspersed with gas gaps of the second medium (Z5, F»),
one obtains:
dzNin - 2
hdw d92 — mhe?
1-F)(1-Fy) n (1—-F)?F[1 - F
1-F (1-F)?

wH?Re {<R<n>>} . F=FF, (14.3)

(14.4)

(R = (2, — 2,)° {n<

Here <R(”)> is the stack factor reflecting the radiator geometry. The integration of ((14.3)) with respect to 62 can
be simplified for the case of a regular radiator (112 — o00), transparent in terms of XTR generation media, and
n > 1 [Gar71]. The frequency spectrum of emitted XTR photons is given by:

dN; MO PN, dan e (k= Chin) it
in _ d 2 in__ C C 2 min 2 k C
hdw /0 Fdwdo? ~ i (1 C2) o= (k= C)2(k+Cy)? S t1+t2( +C2))
(14.5)
C _ tl’Q(W% — (JJ%) C . - i w(t1 + tg) + tlw% + tgw%
12 drew ™" dme ~2 w '

The sum in (14.5) is defined by terms with & > k,,;, corresponding to the region of § > 0. Therefore k,,;, should
be the nearest to C,;,, integer ki > Chyin. The value of k. is defined by the maximum emission angle 9,2mz ~
10y~2. It can be evaluated as the integer part of

w(ty +1t2) 10
Crmaz = Cmin + M—Q, kmaz — kmin ~ 10 —10° > 1.
dre v
Numerically, however, only a few tens of terms contribute substantially to the sum, that is, one can choose k.40 ~
kmmin + 20. Eq.(14.5) corresponds to the spectrum of the total number of photons emitted inside a regular transparent
radiator. Therefore the mean interaction length, A x7r, of the XTR process in this kind of radiator can be introduced

as:
hw \T -1
mew dNin
hdw——
/h whdw] ’

Wmin

AxTr = n(ti +t2)
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where hwin ~ 1 keV, and hwp,q,; ~ 100 keV for the majority of high energy physics experiments. Its value is
constant along the particle trajectory in the approximation of a transparent regular radiator. The spectrum of the total
number of XTR photons after regular transparent radiator is defined by (14.5) with:

n—1
1 — exp[—n(oit1 + oato)]
N — Neff = exp|—k(o1t1 + oota)] = ,
11 kz::() [ ( t 2 2)] 1-— exp[—(altl + 02t2)]

where o1 and o, are the photo-absorption cross-sections corresponding to the photon frequency w in the first and
the second medium, respectively. With this correction taken into account the XTR absorption in the radiator ((14.5))
corresponds to the results of [FS75]. In the more general case of the flux of XTR photons after a radiator, the XTR
absorption can be taken into account with a calculation based on the stack factor derived in [GMGY75]:

1-Q"(14+ Q1)1+ F)—2F —201F> (1 — F1)(Q1 — F1)F>(Q™ — F™)
1-Q 2(1-F) 1-F)(Q—F)
Q=Q1-Q2, Qj=cxp|-t;/l;] =exp[-0ojt;], j=1,2.

Both XTR energy loss (14.4) and flux (14.6) models can be implemented as a discrete electromagnetic process (see
below).

(R;ﬁﬁ = (L — Ly)* { } ., (14.6)

14.1.3 Simulating X-ray Transition Radiation Production

A typical XTR radiator consists of many (~ 100) boundaries between different materials. To improve the tracking
performance in such a volume one can introduce an artificial material [eal00], which is the geometrical mixture of foil
and gas contents. Here is an example:

// In DetectorConstruction of an application
// Preparation of mixed radiator material

foilGasRatio = fRadThickness/ (fRadThickness+fGasGap) ;

foilDensity = 1.39xg/cm3; // Mylar

gasDensity = 1.2928»mg/cm3 ; // Air

totDensity = foilDensityxfoilGasRatio +

gasDensity* (1.0-foilGasRatio);

fractionFoil = foilDensityxfoilGasRatio/totDensity;

fractionGas = gasDensity*(l.0-foilGasRatio) /totDensity;

G4Material+ radiatorMat = new G4Material ("radiatorMat",
totDensity,
ncomponents = 2 );

radiatorMat->AddMaterial ( Mylar, fractionFoil );

radiatorMat->AddMaterial ( Air, fractionGas );

Gdcout << * (G4Material::GetMaterialTable()) << Gdendl;

// materials of the TR radiator

fRadiatorMat = radiatorMat; // artificial for geometry
fFoilMat = Mylar;

fGasMat = Air;

This artificial material will be assigned to the logical volume in which XTR will be generated:

solidRadiator = new G4Box ("Radiator",
1.1+xAbsorberRadius ,
1.1+xAbsorberRadius,
0.5+xradThick ) ;
logicRadiator = new G4LogicalVolume ( solidRadiator,
fRadiatorMat, // !!!
"Radiator");
physiRadiator = new G4PVPlacement (0,

(continues on next page)
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(continued from previous page)

G4ThreeVector (0,0, zRad) ,
"Radiator", logicRadiator,
physiWorld, false, 0 )

XTR photons generated by a relativistic charged particle intersecting a radiator with 2n interfaces between different
media can be simulated by using the following algorithm. First the total number of XTR photons is estimated using a
Poisson distribution about the mean number of photons given by the following expression:

w2 ggn,az d2N(n) 2a w2 efnam
N = / d / A= = =— / d / 02d0*Re  (RMY L
o dwd? w2 ), ), e{r)}

Here 62,,, ~ 10772, hwy ~ 1 keV, hwy ~ 100 keV, and (R(™) correspond to the geometry of the experiment.
For events in which the number of XTR photons is not equal to zero, the energy and angle of each XTR quantum is
sampled from the integral distributions obtained by the numerical integration of expression (14.3). For example, the

integral energy spectrum of emitted XTR photons, N SL), is defined from the following integral distribution:

w2 OTQMLZ
N = 22 / wiw / 02d9Re { (R™) }.
wc? 0
In GEANT4 XTR generation inside or after radiators is described as a discrete electromagnetic process. It is convenient
for the description of tracks in magnetic fields and can be used for the cases when the radiating charge experiences
a scattering inside the radiator. The base class G4VXTRenergyLoss is responsible for the creation of tables with
integral energy and angular distributions of XTR photons. It also contains the PostDolt function providing XTR
photon generation and motion (if fExitFlux=true) through a XTR radiator to its boundary. Particular models like
G4RegularXTRadiator implement the pure virtual function GetStackFactor, which calculates the response of the XTR
radiator reflecting its geometry. Included below are some comments for the declaration of XTR in a user application.

In the physics list one should pass to the XTR process additional details of the XTR radiator involved:

// In PhysicsList of an application
else if (particleName == "e-") // Construct processes for electron with XTR
{
pmanager—>AddProcess (new G4MultipleScattering, -1, 1,1 );
pmanager—>AddProcess (new G4eBremsstrahlung(), -1,-1,1 );
pmanager->AddProcess (new Eml0StepCut (), -1,-1,1 );
// in regular radiators:
pmanager->AddDiscreteProcess (

14

new G4RegularXTRadiator // XTR dEdx in general regular radiator
// new G4XTRRegularRadModel - XTR flux after general regular radiator
// new G4TransparentRegXTRadiator - XTR dEdx in transparent
// regular radiator
// new G4XTRTransparentRegRadModel - XTR flux after transparent
// regular radiator

(pDet—->GetLogicalRadiator (), // XTR radiator

pDet->GetFoilMaterial (), // real foil
pDet->GetGasMaterial (), // real gas
pDet->GetFoilThick (), // real geometry
pDet->GetGasThick (),
pDet->GetFoilNumber (),
"RegularXTRadiator"));
// or for foam/fiber radiators:
pmanager->AddDiscreteProcess (
new G4GammaXTRadiator // — XTR dEdx in general foam/fiber radiator
// new G4XTRGammaRadModel - XTR flux after general foam/fiber radiator
( pDet->GetLogicalRadiator (),

(continues on next page)
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1000.,

100.,
pDet->GetFoilMaterial (),
pDet->GetGasMaterial (),
pDet->GetFoilThick (),
pDet->GetGasThick (),
pDet->GetFoilNumber (),
"GammaXTRadiator"));

Here for the foam/fiber radiators the values 1000 and 100 are the v parameters (which can be varied) of
the Gamma distribution for the foil and gas gaps, respectively. Classes G4TransparentRegXTRadiator and
G4XTRTransparentRegRadModel correspond (14.5) to n and n. ¢, respectively.

14.2 Scintillation

Every scintillating material has a characteristic light yield, Y, [photons/MeV], and an intrinsic resolution which gener-
ally broadens the statistical distribution, o; /o > 1, due to impurities which are typical for doped crystals like Nal(T1)
and CsI(TI). The average yield can have a non-linear dependence on the local energy deposition. Scintillators also
have a time distribution spectrum with one or more exponential decay time constants, 7;, with each decay component
having its intrinsic photon emission spectrum. These are empirical parameters typical for each material.

The generation of scintillation light can be simulated by sampling the number of photons from a Poisson distribution.
This distribution is based on the energy lost during a step in a material and on the scintillation properties of that
material. The frequency of each photon is sampled from the empirical spectra. The photons are generated evenly
along the track segment and are emitted uniformly into 47 with a random linear polarization.

14.3 Cerenkov Effect

The radiation of Cerenkov light occurs when a charged particle moves through a dispersive medium faster than the
speed of light in that medium. A dispersive medium is one whose index of refraction is an increasing function of
photon energy. Two things happen when such a particle slows down:

1. a cone of Cerenkov photons is emitted, with the cone angle (measured with respect to the particle momentum)
decreasing as the particle loses energy;

2. the momentum of the photons produced increases, while the number of photons produced decreases.

When the particle velocity drops below the local speed of light, photons are no longer emitted. At that point, the
Cerenkov cone collapses to zero. In order to simulate Cerenkov radiation the number of photons per track length must
be calculated. The formulae used for this calculation can be found below and in [JDJackson98][ealO0]. Let n be the
refractive index of the dielectric material acting as a radiator. Here n = ¢/’ where ¢’ is the group velocity of light in
the material, hence 1 < n. In a dispersive material n is an increasing function of the photon energy € (dn/de > 0). A
particle traveling with speed 8 = v/c will emit photons at an angle 6 with respect to its direction, where 6 is given by

1
cosf = —.

Bn
From this follows the limitation for the momentum of the emitted photons:

1
5

n(emzn) =
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Photons emitted with an energy beyond a certain value are immediately re-absorbed by the material; this is the window
of transparency of the radiator. As a consequence, all photons are contained in a cone of opening angle cos 6,4, =
1/(Bn(€maz)). The average number of photons produced is given by the relations:

2 2
az® |, az 1
dN = % Sin GdEdm = g(l — W)dedz
photons 1
~ 37022 1-— ded
Z TeVem ( n2ﬂ2) car

and the number of photons generated per track length is

dN g [Eme= 1 9 1 [emer de
I ~ 370z / de <1 — n252> =370z [emm — €min — E/ﬁ nQ(e)} .

€min min

The number of photons produced is calculated from a Poisson distribution with a mean of (n) = StepLength dN/dz.
The energy distribution of the photon is then sampled from the density function

14.4 Synchrotron Radiation

14.4.1 Photon spectrum
Synchrotron radiation photons are emitted by relativistic charged particles traveling in magnetic fields. The properties
of synchrotron radiation are well understood and described in textbooks [ST86][JDJackson98][Hof04].

In the simplest case, we have an electron of momentum p moving perpendicular to a homogeneous magnetic field B.
The magnetic field will keep the particle on a circular path, with radius

p _ myfec Numerically we have  p[m] = p[GeV /c] 3;?2?

- £ _ . 14.

F=eB eB (14.7)
In general, there will be an arbitrary angle 6 between the local magnetic field B and momentum vector p of the particle.
The motion has a circular component in the plane perpendicular to the magnetic field, and in addition a constant
momentum component parallel to the magnetic field. For a constant homogeneous field, the resulting trajectory is a

helix.

The critical energy of the synchrotron radiation can be calculated using the radius p of Eq.(14.7) and angle 6 or the
magnetic field perpendicular to the particle direction B, = B'sin 6 according to

3 A%sin@ 3k
EB,o=2pe MY _ 20 2op (14.8)
2m

2 p

Half of the synchrotron radiation power is radiated by photons above the critical energy.
With z we denote the photon energy E.,, expressed in units of the critical energy E.

£y
= . 14.9
“ b, ( )

The photon spectrum (number of photons emitted per path length s and relative energy x) can be written as

d2N_\/§oz eB |
dsdr 27 mec

| Kot de (14.10)

where a = €2/ 4meghc is the dimensionless electromagnetic coupling (or fine structure) constant and K /3 is the
modified Bessel function of the third kind.
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The number of photons emitted per unit length and the mean free path A between two photon emissions is obtained by
integration over all photon energies. Using

/0"0 dx/::Ong(f)dg = 5%

dN S 6BJ_ 1

we find that

ds 23 mpBe A
Here we are only interested in ultra-relativistic (8 = 1) particles, for which A only depends on the field B and not on
the particle energy. We define a constant A g such that

_ B Ghere Ap = V3 me _ o eias T
o e

A= 28
B 5

As an example, consider a 10 GeV electron, travelling perpendicular to a 1T field. It moves along a circular path of
radius p = 33.356 m. For the Lorentz factor we have v = 19569.5 and 8 = 1 — 1.4 x 10~°. The critical energy is
E. = 66.5keV and the mean free path between two photon emissions is A = 0.16183 m.

14.4.2 Validity

The spectrum given in Eq.(14.10) can generally be expected to provide a very accurate description for the synchrotron
radiation spectrum generated by GeV electrons in magnetic fields.

Here we discuss some known limitations and possible extensions.

For particles traveling on a circular path, the spectrum observed in one location will in fact not be a continuous
spectrum, but a discrete spectrum, consisting only of harmonics or modes n of the revolution frequency. In practice,
the mode numbers will generally be too high to make this a visible effect. The critical mode number corresponding to
the critical energy is n. = 3/2~3. 10GeV electrons for example have n,. ~ 1013,

Synchrotron radiation can be neglected for slower particles and only becomes relevant for ultra-relativistic particles
with v > 103, Using 3 = 1 introduces an uncertainty of about 1/2+2 or less than 5 x 1077,

The implementation of synchrotron radiation is not restricted to electrons and applies to any long lived charged particle
including ions. The number of photons generated scales with the charge squared [Bur98]. The effects of synchrotron
radiation from protons and ions are visible in the LHC and have been considered as source of background in FCC-hh
studies [CBBK17]. The number of photons and the power scales with the square of the charge.

The standard synchrotron spectrum of Eq.(14.10) is only valid as long as the photon energy remains small compared
to the particle energy [eal71][TEL82]. This is a very safe assumption for GeV electrons and standard magnets with
fields of order of Tesla.

An extension of synchrotron radiation to fields exceeding several hundred Tesla, such as those present in the beam-
beam interaction in linear-colliders, is also known as beamstrahlung. For an introduction see [Che86].

The standard photon spectrum applies to homogeneous fields and remains a good approximation for magnetic fields
which remain approximately constant over a the length p/~, also known as the formation length for synchrotron
radiation. Short magnets and edge fields will result instead in more energetic photons than predicted by the standard
spectrum.

We also note that short bunches of many particles will start to radiate coherently like a single particle of the equivalent
charge at wavelengths which are longer than the bunch dimensions.

Low energy, long-wavelength synchrotron radiation may destructively interfere with conducting surfaces [JBMG97].

The soft part of the synchrotron radiation spectrum emitted by charged particles travelling through a medium will be
modified for frequencies close to and lower than the plasma frequency [Gri02].
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14.4.3 Direct inversion and generation of the photon energy spectrum

The task is to find an algorithm that effectively transforms the flat distribution given by standard pseudo-random gen-
erators into the desired distribution proportional to the expressions given in Eqs.(14.10),(14.11). The transformation
is obtained from the inverse '~ of the cumulative distribution function F(z) = [ f(t)dt.

Leaving aside constant factors, the probability density function relevant for the photon energy spectrum is
SynRad(z) = / K5 /3(t)dt . (14.11)

Numerical methods to evaluate K53 are discussed in [Luk75]. An efficient algorithm to evaluate the integral SynRad
using Chebyshev polynomials is described in [HHUmstatter81]. This has been used in an earlier version of the Monte
Carlo generator for synchrotron radiation using approximate transformations and the rejection method [Bur90].

The cumulative distribution function is the integral of the probability density function. Here we have
SynRadlInt(z) = /00 SynRad(z) dz , (14.12)
with normalization
SynRadInt(0) = /00 SynRad(z)dx = 5% ,
0

such that %SynRadInt(x) gives the fraction of photons above .

It is possible to directly obtain the desired distribution with a fast and accurate algorithm using an analytical description
based on simple transformations and Chebyshev polynomials. This approach is used here.

We now describe in some detail how the analytical description was obtained. For more details see [Bur].

It turned out to be convenient to start from the normalized complement rather then Eq.(14.12) directly, that is
3 [T [ 3
SynFracInt(z) = — / / K5/3(t)dt dz = 1 — — SynRadInt(z) ,
51 0 z 5

which gives the fraction of photons below x.

Fig. 14.1 shows y = SynFracInt(x) and Fig. 14.2 the inverse x = InvSynFraclnt(y) together with simple approx-
imate functions. We can see, that SynFracInt can be approximated by 2'/3 for small arguments, and by 1 — e~* for
large . Consequently, we have for the inverse, InvSynFracInt(y), which can be approximated for small y by y* and
for large y by —log(1 — y).

Good convergence for InvSynFracInt(y) was obtained using Chebyshev polynomials combined with the approximate
expressions for small and large arguments. For intermediate values, a Chebyshev polynomial can be used directly.
Table 14.1 summarizes the expressions used in the different intervals.

Table 14.1: Expressions used in calculation of InvSynFractlnt for differ-
ent intervals.

Y z = InvSynFraclnt(y)

y<07 v Pen(y)

0.7 <y <0.9999 | Pcn(y)

y > 0.9999 “log(1 — y)Pan(—log(1 — y))

The procedure for Monte Carlo simulation is to generate y at random uniformly distributed between 0 at 1, as provided
by standard random generators, and then to calculate the energy z in units of the critical energy according to x =
InvSynFracInt(y).

The numerical accuracy of the energy spectrum presented here is about 14 decimal places, close to the machine
precision. Fig. 14.3 shows a comparison of generated and expected spectra.

A GEANT4 display of an electron moving in a magnetic field radiating synchrotron photons is presented in Fig. 14.4.
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Fig. 14.1: SynFracInt on a log z scale. The functions 2*/3, 4> and 1 — e=®, —log(1 — y) are shown as dashed lines.
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Fig. 14.2: InvSynFracInt on a log x scale. The functions '/, ¢ and 1 — e=®, —log(1 — y) are shown as dashed
lines.
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Fig. 14.3: Comparison of the exact (smooth curve) and generated (histogram) spectra for 2 x 107 events. The photon
spectrum is shown on the left and the power spectrum on the right side.
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Fig. 14.4: GEANT4 display. 10 GeV et moving initially in x-direction, bends downwards on a circular path by a 0.1T
magnetic field in z-direction.
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14.4.4 Properties of the Power Spectra

The normalised probability function describing the photon energy spectrum is

3

n,(7) = B

/ K o(t)dt . (14.13)

n~(z) gives the fraction of photons in the interval x to x + dx, where x is the photon energy in units of the critical
energy. The first moment or mean value is

*° 8
] /0 zn(z)dx 53

8
153

implying that the mean photon energy is
or variance, is

= 0.30792 of the critical energy. The second moment about the mean,

o 211

2 2
= dz =
o /0 (x — p)"ny(x)dx 675

and the r.m.s. value of the photon energy spectrum is o = % = 0.5591.

The normalised power spectrum is

Po(z) = 98—f x/oo Kss(t)dt |

P, (x) gives the fraction of the power which is radiated in the interval z to x + dz.

Half of the power is radiated below the critical energy
1
/ P, (z) dx = 0.5000
0

The mean value of the power spectrum is

o 55
= z P, (x)dr = ——= = 1.32309 .
The variance is
o0 2351
2 2
frng — P _
7 /0 (z = )" Py (@) 1728 °
sy e /2351 _
and the rm.s. width is o = / $5¢ = 1.16642.
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CHAPTER
FIFTEEN

OPTICAL PHOTONS

15.1 Interactions of optical photons

Optical photons are produced when a charged particle traverses:
1. a dielectric material with velocity above the Cerenkov threshold;

2. a scintillating material.

15.1.1 Physics processes for optical photons

A photon is called optical when its wavelength is much greater than the typical atomic spacing, for instance when
A > 10 nm which corresponds to an energy £ < 100 eV. Production of an optical photon in a HEP detector is
primarily due to:

1. Cerenkov effect;
2. Scintillation.
Optical photons undergo three kinds of interactions:
1. Elastic (Rayleigh) scattering;
2. Absorption;

3. Medium boundary interactions.

Rayleigh scattering

For optical photons Rayleigh scattering is usually unimportant. For A\ = .2 yum we have 0 rqyicigh = .20 for Ny or O,
which gives a mean free path of ~ 1.7 km in air and ~ 1 m in quartz. Two important exceptions are aerogel, which is
used as a Cerenkov radiator for some special applications and large water Cerenkov detectors for neutrino detection.

The differential cross section in Rayleigh scattering, do /dS2, is proportional to 1 + cos? 6, where @ is the polar angle
of the new polarization with respect to the old polarization.
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Absorption

Absorption is important for optical photons because it determines the lower A limit in the window of transparency of
the radiator. Absorption competes with photo-ionisation in producing the signal in the detector, so it must be treated
properly in the tracking of optical photons.

Medium boundary effects

When a photon arrives at the boundary of a dielectric medium, its behaviour depends on the nature of the two materials
which join at that boundary:

Case dielectric — dielectric. The photon can be transmitted (refracted ray) or reflected (reflected ray). In case where
the photon can only be reflected, total internal reflection takes place.

Case dielectric — metal. The photon can be absorbed by the metal or reflected back into the dielectric. If the photon
is absorbed it can be detected according to the photoelectron efficiency of the metal.

Case dielectric — black material. A black material is a tracking medium for which the user has not defined any
optical property. In this case the photon is immediately absorbed undetected.

15.1.2 Photon polarization

The photon polarization is defined as a two component vector normal to the direction of the photon:

ae’® o [ a1 et®e
, =e®° .
aset®2 ase1%®e
where @, = (®; — $3)/2 is called circularity and ®, = (P; + P3)/2 is called overall phase. Circularity gives the

left- or right-polarization characteristic of the photon. RICH materials usually do not distinguish between the two
polarizations and photons produced by the Cerenkov effect and scintillation are linearly polarized, that is ®, = 0.

The overall phase is important in determining interference effects between coherent waves. These are important only
in layers of thickness comparable with the wavelength, such as interference filters on mirrors. The effects of such
coatings can be accounted for by the empirical reflectivity factor for the surface, and do not require a microscopic
simulation. GEANT4 does not keep track of the overall phase.

Vector polarization is described by the polarization angle tan ¥ = ay/a;. Reflection/transmission probabilities are
sensitive to the state of linear polarization, so this has to be taken into account. One parameter is sufficient to describe
vector polarization, but to avoid too many trigonometrical transformations, a unit vector perpendicular to the direction
of the photon is used in GEANT4. The polarization vector is a data member of G4DynamicParticle.

15.1.3 Tracking of the photons

Optical photons are subject to in flight absorption, Rayleigh scattering and boundary action. As explained above,
the status of the photon is defined by two vectors, the photon momentum (p' = hE) and photon polarization (€). By
convention the direction of the polarization vector is that of the electric field. Let also @ be the normal to the material
boundary at the point of intersection, pointing out of the material which the photon is leaving and toward the one
which the photon is entering. The behaviour of a photon at the surface boundary is determined by three quantities:

1. refraction or reflection angle, this represents the kinematics of the effect;
2. amplitude of the reflected and refracted waves, this is the dynamics of the effect;

3. probability of the photon to be refracted or reflected, this is the quantum mechanical effect which we have to
take into account if we want to describe the photon as a particle and not as a wave.
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As said above, we distinguish three kinds of boundary action, dielectric — black material, dielectric — metal, dielectric
— dielectric. The first case is trivial, in the sense that the photon is immediately absorbed and it goes undetected.

To determine the behaviour of the photon at the boundary, we will at first treat it as an homogeneous monochromatic
plane wave:
B pik-d—iwt

E 0€

oS

k x

émk

Case dielectric — dielectric

In the classical description the incoming wave splits into a reflected wave (quantities with a double prime) and a
refracted wave (quantities with a single prime). Our problem is solved if we find the following quantities:

E —FE eu?‘f—wt

= Ly

Bl — g eiﬁ“.fﬂut
=L

For the wave numbers the following relations hold:

o€

N
K| =k == \/ue

Where the speed of the wave in the medium is v = ¢/, /z€ and the quantity n = ¢/v = ,/ue€ is called refractive index
of the medium. The condition that the three waves, refracted, reflected and incident have the same phase at the surface
of the medium, gives us the well known Fresnel law:

-

(k . f)surf = (k/ . 'f)surf = (k// : f)surf

ksini = k' sinr = k" sinr’
where i, 7,7’ are, respectively, the angle of the incident, refracted and reflected ray with the normal to the surface.
From this formula the well known condition emerges:

. /
1=r

sini we n
sinr LE n

The dynamic properties of the wave at the boundary are derived from Maxwell’s equations which impose the continuity
of the normal components of D and B and of the tangential components of E and H at the surface boundary. The
resulting ratios between the amplitudes of the the generated waves with respect to the incoming one are expressed in
the two following cases:

1. aplane wave with the electric field (polarization vector) perpendicular to the plane defined by the photon direc-
tion and the normal to the boundary:

E| 2n cos1 2n cos1

E ncost = £n’cosr ncost +n’cosr
0 "

. wor .
E{ mncost— 7N COST  pcosi—n'cosr

Ey ncosi—|—ﬁn’cosr ncost + n' cosr

where we suppose, as it is legitimate for visible or near-visible light, that p/p’ = 1;
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2. aplane wave with the electric field parallel to the above surface:

E| 2ncosi

2n.cost

Ey En'cosi+ ncosr n’ cosi + ncosr

m

[T . .
E{ 7 Ccost—ncosr  p’cosi—mncosr

Ey ﬁn’cosi—l—ncosr n' cost + ncosr

with the same approximation as above.

We note that in case of photon perpendicular to the surface, the following relations hold:

Ey  2n Ey n'—n
Ey2 n'+n’ Ey n'+n

where the sign convention for the parallel field has been adopted. This means that if n’ > n there is a phase inversion

for the reflected wave.

Any incoming wave can be separated into one piece polarized parallel to the plane and one polarized perpendicular,

and the two components treated accordingly.

To maintain the particle description of the photon, the probability to have a refracted or reflected photon must be
calculated. The constraint is that the number of photons be conserved, and this can be imposed via the conservation
of the energy flux at the boundary, as the number of photons is proportional to the energy. The energy current is given

by the expression:

Scosi=S8"cosr+ 5" cosi
c 1

8T 1 8T

If we set again 11/’ =~ 1, then the transmission probability for the photon will be:

2
T E{\~ n'cosr
Ey 7.COS 1

and the corresponding probability to be reflected willbe R =1 — T

c 1 cl
— —nE2cosi = ——n'Ef cosr + — —nkE,
0 0 Br 0

"2

CcoS 1

In case of reflection, the relation between the incoming photon (E , €), the refracted one (I_c" ,€") and the reflected one

(k”,&") is given by the following relations:

, 2n cos 1
S Il (evasmra——
n’ cost 4+ ncosr
, 2n cos i
e =e,————
L ncost + n’ cosr
!
n
el = —ej| —e
Il n I
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el =¢ —ey

After transmission or reflection of the photon, the polarization vector is re-normalized to 1. In the case where sinr =
nsini/n’ > 1 then there cannot be a refracted wave, and in this case we have a total internal reflection according to
the following formulas:

' =Fk—2(k-@)a
—/

& = —&+2(¢- )i

Case dielectric — metal

In this case the photon cannot be transmitted. So the probability for the photon to be absorbed by the metal is estimated
according to the table provided by the user. If the photon is not absorbed, it is reflected.

15.1.4 Mie Scattering in Henyey-Greenstein Approximation

(Author: X. Qian, 2010-07-04)

Mie Scattering (or Mie solution) is an analytical solution of Maxwell’s equations for the scattering of optical photon
by spherical particles. The general introduction of Mie scattering can be found in Ref. [wik17]. The analytical express
of Mie Scattering are very complicated since they are a series sum of Bessel functions [Fit14]. Therefore, the exact
expression of Mie scattering is not suitable to be included in the Monte Carlo simulation.

One common approximation made is called “Henyey-Greenstein” [ZS10]. It has been used by Vlasios Vasileiou in
GEANT4 simulation of Milagro experiment [Col07]. In the HG approximation,

do 1—g°

dQ  (1+g? —2gcos(h))3/?

where
dQ) = dcos(0)do

and g = (cos(#)) can be viewed as a free constant labeling the angular distribution.

Therefore, the normalized density function of HG approximation can be expressed as:

cos(0, o
P(cos(fp)) = ~— - i conl?) — ( 1 ; )
O — = —
1, 42 dcos(6) 29 \(1+g¢%—2gcos(fp)) 1+g

Therefore,

1 1— 2 1 21_
cos(f) = — - (1+92_(g)2) =2p( +9)*(1 —g+gp) 1
29 l=g+29-p (1—g+2gp)?

where p is a uniform random number between 0 and 1.

Similarly, the backward angle where §, = ™ — 0 can also be simulated by replacing 0 to 6. Therefore the final
differential cross section can be viewed as:

do do do
o Tm(eﬂgf) +(1— T)m(ebvgb)

This is the exact approach used in Ref. [Vas]. Here 7 is the ratio factor between the forward angle and backward angle.

In implementing the above MC method into GEANT4, the treatment of polarization and momentum are similar to that
of Rayleigh scattering. We require the final polarization direction to be perpendicular to the momentum direction. We
also require the final momentum, initial polarization and final polarization to be in the same plane.
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CHAPTER
SIXTEEN

GEANT4-DNA

16.1 GEANT4-DNA physical processes and models

The GEANT4-DNA physical processes and models (theoretical, semi-empirical) are adapted for track structure sim-
ulations in liquid water and DNA material down to the eV scale. They are described on a dedicated web site:
http://geant4-dna.org, which includes a full list of publications.

Any report or published results obtained using the GEANT4-DNA software shall cite the following publications:

e The Geant4-DNA project, S. Incerti et al., Int. J. Model. Simul. Sci. Comput. 1 (2010) 157-178 - http:
//dx.doi.org/10.1142/S1793962310000122

» Comparison of |Geant4| very low energy cross section models with experimental data in water, S. Incerti et al.,
Med. Phys. 37 (2010) 4692-4708 - http://dx.doi.org/10.1118/1.3476457

e Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4
Monte Carlo simulation toolkit, M. A. Bernal et al., Phys. Med. 31 (2015) 861-874 - http://dx.doi.org/10.1016/
j-jmp.2015.10.087

* Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-
DNA Project, S. Incerti et al., Med. Phys. 45 (2018) €722-e739 - https://doi.org/10.1002/mp.13048
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CHAPTER
SEVENTEEN

MICROELECTRONICS

17.1 The MicroElec extension for microelectronics applications

The GEANT4-MicroElec! extension [Inc], developed by CEA, aims at modeling the effect of ionizing radiation in
highly integrated microelectronic components. It describes the transport and generation of very low energy electrons
by incident electrons, protons and heavy ions in silicon.

All GEANT4-MicroElec physics processes and models simulate step-by-step interactions of particles in silicon down to
the eV scale; they are pure discrete processes. Table 17.1 summarizes the list of physical interactions per particle type
that can be modeled using the GEANT4-MicroElec extension, along with the corresponding process classes, model
classes, low energy limit applicability of models, high energy applicability of models and energy threshold below
which the incident particle is killed (stopped and the kinetic energy is locally deposited, because of the low energy
limit applicability of the inelastic model). All models are interpolated. For now, they are valid for silicon only (use the
G4_Si GEANT4-NIST material).

Table 17.1: List of G4MicroElec physical interactions

Particle Interaction Process Model Range Kill
Electron Elastic scattering | G4MicroElastic G4MicroElecElasticModel 5eV-100 MeV 16.7 eV
Electron Ionisation G4MicroEleclnelastic | G4MicroElecInelasticModel | 16.7 eV-100 MeV -
Protons, ions | lonisation G4MicroEleclnelastic | G4MicroElecInelasticModel | 50 keV/u-10 MeV/u | —

All details regarding the physics and formula used for these processes and models and available in [AV 12] for incident
electrons and in [AVP12] for incident protons and heavy ions.

! Previously called MuElec.
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CHAPTER
EIGHTEEN

SHOWER PARAMETERIZATIONS

18.1 Gflash Shower Parameterizations

The computing time needed for the simulation of high energy electromagnetic showers can become very large, since it
increases approximately linearly with the energy absorbed in the detector. Using parameterizations instead of individ-
ual particle tracking for electromagnetic (sub)showers can speed up the simulations considerably without sacrificing
much precision. The Gflash package allows the parameterization of electron and positron showers in homogeneous
(for the time being) calorimeters and is based on the parameterization described in Ref. [GP93] .

18.1.1 Parameterization Ansatz

The spatial energy distribution of electromagnetic showers is given by three probability density functions (pdf),
dE(F) = E f(t)dt f(r)dr f(¢)d¢,

describing the longitudinal, radial, and azimuthal energy distributions. Here ¢ denotes the longitudinal shower depth in
units of radiation length, r measures the radial distance from the shower axis in Moliere units, and ¢ is the azimuthal
angle. The start of the shower is defined by the space point where the electron or positron enters the calorimeter, which
is different from the original Gflash. A gamma distribution is used for the parameterization of the longitudinal shower
profile, f(t). The radial distribution f(r), is described by a two-component ansatz. In ¢, it is assumed that the energy
is distributed uniformly: f(¢) = 1/27.

18.1.2 Longitudinal Shower Profiles

The average longitudinal shower profiles can be described by a gamma distribution [LS75]:

1 dE(t) (Bt)*~" Bexp(—pt)
<Edt> =10 = Ma)

The center of gravity, (t), and the depth of the maximum, 7', are calculated from the shape parameter « and the scaling
parameter /3 according to:

(18.1)

In the parameterization all lengths are measured in units of radiation length (Xj), and energies in units of the critical
energy (£, = 2.66 (X 0%) 1'1). This allows material independence, since the longitudinal shower moments are equal
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in different materials, according to Ref. [Ros52]. The following equations are used for the energy dependence of 17,5,
and (@pom ), with y = E/E, and t = 2/ X, « being the longitudinal shower depth:

Thom =Iny + 11
Qhom = a1 + (a2 + a3/Z) Iny.
The y-dependence of the fluctuations can be described by:
o = (51 +solny)™t. (18.2)
The correlation between In T},,,,, and In a0y, is given by:
p(InThom, Inhom) = p = 1 +r2lny. (18.3)

From these formulae, correlated and varying parameters a; and f3; are generated according to

(e ) = (e )+o(3)

with
o (omT) 0 R
= 0 oma) e is
2 2

o(ln ) and o (In T') are the fluctuations of T}y, and (auom. The values of the coefficients can be found in Ref.[GP93].

18.1.3 Radial Shower Profiles

For the description of average radial energy profiles,

1 dE(t,r)
f(r) = m dr

a variety of different functions can be found in the literature. In Gflash the following two-component ansatz, an
extension of that in Ref. [GRP90], was used:

f(r)=pfc(r)+ (1 —p)fr(r)

2rRZ, 2rR2.
R S TR e
with
0<p<l.

Here R¢ (R7) is the median of the core (tail) component and p is a probability giving the relative weight of the core
component. The variable 7 = ¢/7', which measures the shower depth in units of the depth of the shower maximum,
is used in order to generalize the radial profiles. This makes the parameterization more convenient and separates the
energy and material dependence of various parameters. The median of the core distribution, R¢, increases linearly
with 7. The weight of the core, p, is maximal around the shower maximum, and the width of the tail, Rr, is minimal
atT =~ 1.

The following formulae are used to parameterize the radial energy density distribution for a given energy and material:

Ro hom(T) = 21 + 227
Ry hom (7) = ki{exp(ks(7 — ka)) + exp(ka(T — k2))}

p2 —T p2 —T
Phom (T) = p1€xp { — exp ( ) }
p3 D3

The parameters z; - - - p3 are either constant or simple functions of In F or Z.

Radial shape fluctuations are also taken into account. A detailed explanation of this procedure, as well as a list of all
the parameters used in Gflash, can be found in Ref. [GP93].
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18.1.4 Gflash Performance

The parameters used in this Gflash implementation were extracted from full simulation studies with Geant 3. They
also give good results inside the GEANT4 fast shower framework when compared with the full electromagnetic shower
simulation. However, if more precision or higher particle energies are required, retuning may be necessary. For the
longitudinal profiles the difference between full simulation and Gflash parameterization is at the level of a few percent.
Because the radial profiles are slightly broader in Geant3 than in GEANT4, the differences may reach >10%. The gain
in speed, on the other hand, is impressive. The simulation of a 1 TeV electron in a PbWQO, cube is 160 times faster with
Gflash. Gflash can also be used to parameterize electromagnetic showers in sampling calorimeters. So far, however,
only homogeneous materials are supported.
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CHAPTER
NINETEEN

PHONON-LATTICE INTERACTIONS

19.1 Introduction

Phonons are quantized vibrations in solid-state lattices or amorphous solids, of interest to the low-temperature physics
community. Phonons are typically produced when a heat source excites lattice vibrations, or when energy from
radiation is deposited through elastic interactions with nuclei of lattice atoms. Below 1 K, thermal phonons are highly
suppressed; this leaves only acoustic and optical phonons to propagate.

There is significant interest from the condensed-matter community and direct dark-matter searches to integrate phonon
production and propagation with the excellent nuclear and electromagnetic simulations available in GEANT4. An
effort in this area began in 2011 by the SuperCDMS Collaboration [BAB+12] and is continuing; initial developments
in phonon propagation have been incorporated into the GEANT4 toolkit for Release 10.0.

As quasiparticles, phonons at low temperatures may be treated in the GEANT4 particle-tracking framework,
carrying well defined momenta, and propagating in specific directions until they interact [BAB+12]. The
present implementation handles ballistic transport, scattering with mode-mixing, and anharmonic downconversion
[Tam93a][Tam93b][Tam85] of acoustic phonons. Optical phonon transport and interactions between propagating
phonons and thermal background phonons are not treated.

Production of phonons from charged particle energy loss or by photon-lattice interactions are in development, but are
not yet included in the GEANT4 toolKkit.

19.2 Phonon Propagation

The propagation of phonons is governed by the three-dimensional wave equation [Wol98]:
prei = Oijlmkjkmel (19.1)

where p is the crystal mass density and C};,,; is the elasticity tensor; the phonon is described by its wave vector k,
frequency w and polarization €.

For a given wave vector k, Eq.(19.1) has three eigenvalues w and three polarization eigenvectors €. The three polar-
ization states are labelled Fast Transverse (FT), Slow Transverse (ST) and Longitudinal (L). The direction and speed
of propagation of the phonon are given by the group velocity vy, = dw/dk, which may be computed from Eq.(19.1):
dw(k -
o= ) G (19.2)
dk

Since the lattice tensor Cjjyy, is anisotropic in general, the phonon group velocity vy is not parallel to the momen-
tum vector hk. This anisotropic transport leads to a focussing effect, where phonons are driven to directions which
correspond to the highest density of eigenvectors k. Experimentally, this is seen [NW79] as caustics in the energy
distribution resulting from a point-like phonon source isotropic in E—space, as shown in Fig. 19.1.
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Fig. 19.1: Left: outline of phonon caustics in germanium as predicted by Northrop and Wolfe [NW79]. Right:
Phonon caustics as simulated using the GEANT4 phonon transport code.

19.3 Lattice Parameters

19.4 Scattering and Mode Mixing

In a pure crystal, isofope scattering occurs when a phonon interacts with an isotopic substitution site in the lattice. We
treat it as an elastic scattering process, where the phonon momentum direction (wave vector) and polarization are both
randomized. The scattering rate for a phonon of frequency v (w/27) is given by [Tam93b]

4
Uscatter = By (19.3)
where I'cq11er 18 the number of scattering events per unit time, and B is a constant of proportionality derived from the

elasticity tensor (see Eq. 11 and Table 1 in [Tam85]). For germanium, B = 3.67 x 10~*!s3, [Tam85]

At each scattering event, the phonon polarization may change between any of the three states L, ST, F'T. The
branching ratios for the polarizations are determined by the relative density of allowed states in the lattice. This
process is often referred to as mode mixing.

19.5 Anharmonic Downconversion

An energetic phonon may interact in the crystal to produce two phonons of reduced energy. This anharmonic down-
conversion conserves energy (k =K +k" ), but not momentum, since momentum is exchanged with the bulk lattice. In
principle, all three polarization states may decay through downconversion. In practice, however, the rate for L-phonons
completely dominates the energy evolution of the system, with downconversion events from other polarization states
being negligible [Tam93b].

The total downconversion rate I',,,;, for an L-phonon of frequency v is given by [Tam93b]
Conn = AP (19.4)

where (as in Eq.(19.3)) A is a constant of proportionality derived from the elasticity tensor (see Eq. 11 and Table 1 in
[Tam85]). For germanium, A = 6.43 x 10~5%s%. [Tam85]
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Downconversion may produce either two transversely polarized phonons, or one transverse and one longitudinal. The
relative rates are determined by dynamical constants derived from the elasticity tensor C; ;.

As can be seen from Eqgs.(19.3) and (19.4), phonon interactions depend strongly on energy hv. High energy phonons
(v ~ THz) start out in a diffusive regime with high isotope scattering and downconversion rates and mean free paths of
order microns. After several such interactions, mean free paths increase to several centimeters or more. This transition
from a diffuse to a ballistic transport mode is commonly referred to as “quasi-diffuse” and it controls the time evolution
of phonon heat pulses.

Simulation of heat pulse propagation using our GEANT4 transport code has been described previously [BAB+12] and
shows good agreement with experiment.
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CHAPTER
TWENTY

CRYSTAL CHANNELING PHYSICS

20.1 Channeling of relativistic particles

Coherent effects of ultra-relativistic particles in crystals allow the manipulation of particle trajectories thanks to the
strong electric field generated between crystal planes and axes [Tsy76].

When the motion of a charged particle is aligned (or at a small angle) with a string (or plane), a coherent scattering
with the atoms of the string (or plane) can occur. In the low-angle approximation we can replace the potentials of the
single atoms with an averaged continuous potential. The atomic string (plane) in the continuum approximation gently
steers a particle away from the atoms, therefore suppressing the encounters with small impact parameters listed above.
The channeling phenomenon is due to the fact that the fields of the atomic axes and planes form the potential wells,
where the particle may be trapped. Particles can be trapped between planes or axes, under planar or axial channeling,
respectively.

The continuous approximation by Lindhard [Lin65] was developed to describe channeling and its related phenomena.
Coherent effects are primary phenomena, i.e., they govern path of particles. Four basic assumptions can be introduced
for particles under orientational effects. First, angles of scattering may be assumed to be small. Indeed, scattering
at large angles imply complete lost of the original direction. Secondly, because particle move at small angle with
respect to an aligned pattern of atoms and collisions with atoms in a crystal demand proximity, correlations between
collisions occur. Third, since coherent length [ of scattering process (I = 2F /¢, where E is the particle energy and ¢
the transferred momentum) is larger than lattice constant, classical picture can be adopted. Fourth, idealized case of a
perfect lattice may be used as a first approximation.

By following such assumptions, the continuous approximation can be inferred. Under such approximation, the poten-
tial of a plane of atoms U (c) can be averaged along direction parallel to plane directions. Angle # has to be greater
than scattering angle ¢ with a single atom:

U(z) = Nd, / /_ ;Oo dydzV (r)

The transverse motion of a particle incident at small angle with respect to one of the crystal axes or planes is governed
by the continuous potential of the crystal lattice. A charged particle moving in a crystal is in planar channeling
condition if it has a transverse momentum that is not sufficient to exceed the barrier to a neighboring channel, in this
case the particle can not escape from the channel.

In the limit of high particle momenta the motion of particles in the channeling case (a series of correlated collisions)
may be considered in the framework of classical mechanics, even though the single process of scattering is a quantum
event . The classical approximation works better at high energy for two reasons: the first is that the wave lengths of
incoming particles are sufficiently small to prevent the formation of interference patterns of waves; secondly classical
mechanics is applicable thanks to the large number of energetic levels accessible in the interplanar potential (in analogy
with the quantum harmonic oscillator). The second condition is always fulfilled for heavy particles, such as ions and
protons, but for light particles (electrons, positrons) the classical approach starts to work in the 10 — 100M eV range.
For motion in the potential U () the longitudinal component of the momentum is conserved for a relativistic particle,
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implying the conservation of the transverse energy [BCK96]:

Pﬁ(dff

E
T 2 \ dz

2
) + U(z) = const
The equation which describes the particle motion in the potential well is therefore:
d*x
— +U'(z)=0
pB—— +U'(2)

The particle remains trapped within the channel if its transverse energy Er is less than the potential-well depth Uy:

_ps

Er 5

0? +U(z) < Uy
where Uy is the maximum value of the potential barrier at the distance d,/2 from the center of the potential well,
where the plane is located.

Intensity of incoherent interactions for particles under coherent effects strongly depends on local nuclei and electronic
density. Thereby, the intensity of interaction in amorphous media has to be weighted with respect to the nuclear and
electronic density averaged transverse to the crystal planes or axes [KO73]. Root-mean-square of transverse energy
variation in crystal turns into a function of particle position, e.g. it is valid to treat intensity of interactions under planar

condition
dpz\ _ /dpz\  n(z)
dz /|~ \ dz am Tam

2
where <d” < > is the root-mean-square of transverse energy variation in crystal, n(x) is the atomic density along the

dz
crystal plane, n,,, is the average crystal atomic density.

Information on the implementation details can be found in literature [BAB+14][EBaVGuidil3]
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CHAPTER
TWENTYONE

HADRONIC CROSS SECTIONS IN GEANT4

Total, inelastic and elastic cross sections for hadron-nucleus, nucleus-nucleus and antinucleus-nucleus reactions are
provided for all possible energies [eall16]. Coulomb cross sections are implemented within electromagnetic physics
libraries as single or multiple scatterings of charged particles, so the main Coulomb term is excluded from hadron cross
sections. An interference between electromagnetic and strong amplitudes should be taken into account in hadronic
physics but in the main models is ignored so far.

21.1 Hadron-nucleus Cross Sections

21.1.1 Hadron-nucleon cross sections

The hadron-nucleon cross section parameterisations were tunned to the PDG-2016 data [ealParticleDGroup16]. Both
total and elastic cross sections are parameterized for protons, anti-protons, pions, and kaons. For positively charged
projectile a Coulomb barrier factor is applied, for negatively changed particles below laboratory kinetic energy 100
keV cross section is set to const value. For hyperons, charmed and bottom mesons and baryons scaling from proton
and pion cross sross sections is applied.

21.1.2 Neutron-Nucleus cross sections

Neutron cross section data for elastic, inelastic, capture, and fission processes are available with the G4NDL4.6 dataset
derived from the recent ENDF database. These data are used with all HP models. For fast access to the neutron cross
sections for all target nuclei, the dataset G4PARTICLEXS?2.1 is used in the default and many other reference Physics
Lists.

21.1.3 Other Hadron-Nucleus cross sections

For protons and pions a special combination of cross sections from the Barashenkov interpolations [BT72][NEA] are
used below 91 GeV and the Glauber-Gribov cross sections are used above. Glauber-Gribov cross sections are used for
all other hadrons and ions.

The simplified Glauber model cross sections assume Gaussian-distributed, point-like nucleons and are given by
[Gri09a][Gri09b]:

A hN A hN
O'Z)‘? =27R%*In [1 + 2;2; } , aan =7R’In {1 + 75%"; ] ,
hA hA hA
Oel = Otot — Oin -

Here o4}, o4, and oA

27 are the total, inelastic and elastic cross sections, respectively.
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The model is reduced to the selection of o/} and R(A) values. The latest edition of PDG [Groom00] and parame-
terizations were used for o]ty including the total cross sections of p, p, n, 7=, K= and ¥~ on protons and neutrons
For known cross sections on protons and neutrons, AclY = Npofopt + Nnol, where N, and N,, are the number
of protons and neutrons in the nucleus. The nuclear radius (the RMS radius of the nucleon Gaussian distribution),
is parametrized as R(A) = r,A3 f(A), ro ~ 1.1 fm, with f(A) < 1 for A > 21, and f(A) > 1 for the case
3 < A < 21. Fig. 21.1 and Fig. 21.2 show the prediction of the Barashenkov and Glauber-Gribov model for total,
inelastic and production cross sections of neutrons and protons on a carbon target. The production cross section is
defined to be the difference between the inelastic and charge exchange cross sections.
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Fig. 21.1: Total, inelastic and production cross-sections of neutrons on a carbon target in the energy range 1072 —
10% GeV. Experimental data (open and solid points) from [IHEP][NEA], lines correspond to the Glauber-Gribov
model.
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Fig. 21.2: Inelastic and production cross-sections of protons on a carbon target in the energy range 102 — 103 GeV.
Experimental data (open points and squares) are from [I[HEP][NEA]. The solid and dashed lines correspond to the

Barashenkov and Glauber-Gribov inelastic models, respectively. The dotted line shows the Glauber-Gribov production
model.
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21.1.4 Extraction of CHIPS kaon and hyperon nuclear cross sections

Alternative cross sections for kaons and hyperons incident upon nuclei are based on the parameterization by Kossov
and Degtyarenko who developed them as part of the CHIPS package [KosO02][DKW00a][DKWO00b][DKWO0Oc]. This
parameterization was developed using extensive data samples and contains a number of parameters which depend on
the type of projectile. With 9.6 these cross sections were made independent of the CHIPS package and their interfaces
made to conform to the hadronic standard in the toolKkit.

21.2 Total Reaction Cross Section in Nucleus-nucleus Reactions

21.2.1 Nucleus-nucleus cross sections

The simulation of nucleus-nucleus interactions and the corresponding cross sections is required by accelerator exper-
iments, cosmic ray studies and medical applications, and in other applications. An important input for simulations of
this process is the total reaction cross section, which is defined as the total (o) minus the elastic (o,;) cross section
for nucleus-nucleus reactions:

OR =0T — O¢l-

With increasing energy electromagnetic dissociation (EMD) becomes dominant, especially for the collisions of heavy
nuclei. At low and intermediate energies EMD does not play an essential role, while the nuclear break-up and multi-
particle productions dominate. Currently, EDM cross secction is not used in reference Physics Lists.

The strong interaction cross sections can be calculated in the Glauber approximation [SYuSZ89][Shu03] at high (> 1
GeV) energies. The description of the cross sections at low and intermediate energies is the challenging component.

A first simple expression was proposed in [BP50]: 019 = w(Ry + Ry — 0)2, where R, and Ry are the radii of the
two interacting nuclei (R = ro A'/3), ry ~ 1.36 fm, and ¢ ~ 0 — 1.5 fm, depending on a projectile energy (following

[SBV74][SBV75] and the further refinements of [STS+93] ¢ o (A7 + A5 /*)).

In order to extend the parameterization to the intermediate energy range [eal87] o4p = WR?M (1 - B/Ecums) can
be used, where R;,,; is composed of two terms, energy dependent and independent, B = Z4 Zpe? /rc(AY/3 + BY/3)

is the Coulomb barrier of the projectile-target system, and E g is center-of-mass system energy.

21.2.2 Antinucleus—nucleus cross sections

Production of anti-nuclei, especially anti-*He, has been observed in nucleus-nucleus and proton-proton collisions by
the RHIC and LHC experiments. Contemporary and future experimental studies of anti-nucleus production require a
knowledge of anti-nucleus interaction cross sections with matter which are needed to estimate various experimental
corrections, especially those due to particle losses which reduce the detected rate. Because only a few measurements
of these cross sections exist, they were calculated using the Glauber approach [FG66][Fra68][DK85] and the Monte
Carlo averaging method proposed in [AMZS84][SYuSZ89].

Two main considerations are used in the calculations: a parameterization of the amplitude of antinucleon-nucleon
elastic scattering in the impact parameter representation and a parameterization of one-particle nuclear densities for
various nuclei. The Gaussian form from [FG66][DK85] was used for the amplitude and for the nuclear density the
Woods-Saxon distribution for intermediate and heavy nuclei and the Gaussian form for light nuclei was used, with
parameters from the paper [WBB09]. Details of the calculations are presented in [eall1].

Resulting calculations agree rather well with experimental data on anti-proton interactions with light and heavy target
nuclei (x2/NoF = 258/112) which corresponds to an accuracy of ~8% [call1]. Nearly all available experimental
data were analyzed to get this result. The predicted antideuteron-nucleus cross sections are in agreement with the
corresponding experimental data [eal72].
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Direct application of the Glauber approach in software packages like is ineffective due to the large number of numerical
integrations required. To overcome this limitation, a parameterization of calculations [Gri09a][Gri09b] was used,
with expressions for the total and inelastic cross sections as proposed above in the discussion of the Glauber-Gribov
extension. Fitting the calculated Glauber cross sections yields the effective nuclear radii presented in the expressions
for pA, dA, tA and @A interactions:

szf —q Ab + c/A1/3.

The quantities a, b and c are given in [ealll].

As a result of these studies, the toolkit can now simulate anti-nucleus interactions with matter for projectiles with
momenta between 100 MeV/c and 1 TeV/c per anti-nucleon.

21.2.3 Alternative nucleus-nucleus cross sections

The total reaction cross section has been studied both theoretically and experimentally and several empirical param-
eterizations of it have been developed. In GEANT4 the total reaction cross sections are calculated using four such
parameterizations: the Sihver[STS+93], Kox[eal87], Shen[SWF+89] and Tripathi[ TCW97] formulae. Each of these
is discussed in order below.

Sihver Formula
Of the four parameterizations, the Sihver formula has the simplest form:

on=mr} [AYP + AP —bola; 4+ A7)
where A, and A; are the mass numbers of the projectile and target nuclei, and

bo = 1581 — 0.876(A, /% + A /%),
ro = 1.36 fm.
It consists of a nuclear geometrical term (A;/ 34 A;/ 3) and an overlap or transparency parameter (by) for nucleons

in the nucleus. The cross section is independent of energy and can be used for incident energies greater than 100
MeV/nucleon.

Kox and Shen Formulae

Both the Kox and Shen formulae are based on the strong absorption model. They express the total reaction cross
section in terms of the interaction radius R, the nucleus-nucleus interaction barrier B, and the center-of-mass energy
of the colliding system E¢pz:

B
op=mR?|1— .
f [ ECM:|

Kox formula: Here B is the Coulomb barrier (B..) of the projectile-target system and is given by
Zth62
1/3 1/3)’
re (47 + 4,%)

where rc = 1.3 fm, e is the electron charge and Z;, Z,, are the atomic numbers of the target and projectile nuclei. R is
the interaction radius R;,; which in the Kox formula is divided into volume and surface terms:

B, =

Rint = Rvol + Rsurf-
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Ryor and R,y correspond to the energy-independent and energy-dependent components of the reactions, respec-
tively. Collisions which have relatively small impact parameters are independent of both energy and mass number.
These core collisions are parameterized by R,.;. Therefore R, can depend only on the volume of the projectile and
target nuclei:

1/3 :
Rvol =70 (Af/ + A}lj/&) .
The second term of the interaction radius is a nuclear surface contribution and is parameterized by

Ai/3A;/3

i M B +D.
A3 4 AP

Royrp =10 | —c

The first term in brackets is the mass asymmetry which is related to the volume overlap of the projectile and target.
The second term c is an energy-dependent parameter which takes into account increasing surface transparency as the
projectile energy increases. D is the neutron-excess which becomes important in collisions of heavy or neutron-rich
targets. It is given by

b 5A—2)7,
AyA,

The surface component (R, ¢) of the interaction radius is actually not part of the simple framework of the strong
absorption model, but a better reproduction of experimental results is possible when it is used.

The parameters 7, a and c are obtained using a x? minimizing procedure with the experimental data. In this procedure
the parameters r( and a were fixed while c was allowed to vary only with the beam energy per nucleon. The best 2 fit
is provided by 7o = 1.1 fm and a = 1.85 with the corresponding values of c listed in Table III and shown in Fig. 12 of
Ref. [eal87] as a function of beam energy per nucleon. This reference presents the values of ¢ only in chart and figure
form, which is not suitable for Monte Carlo calculations. Therefore a simple analytical function is used to calculate ¢
in GEANT4. The function is:

10
c= ——5+2.0f0rx2 1.5
T

10 z 3
c= (_1.55 +2,0> X (ﬁ) for x < 1.5,

x =log(KE),
where K F is the projectile kinetic energy in units of MeV/nucleon in the laboratory system.

Shen formula: as mentioned earlier, this formula is also based on the strong absorption model, therefore it has a
structure similar to the Kox formula:

B
_ 2 _
or = 10mR {1 ECAJ .

However, different parameterized forms for R and B are applied. The interaction radius R is given by

1/3 41/3 1/3 41/3
Ren [ Ay SO )] S e MO
where «, 3 and rq are
a=1fm
B =0.176 MeV'/? . fm
ro = 1.1fm.

In Ref. [SWF+89] as well, no functional form for C'(K E) is given. Hence the same simple analytical function is
used by GEANT4 to derive c values.
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The second term B is called the nuclear-nuclear interaction barrier in the Shen formula and is given by

_ 1427, , RR,

B
T Rt+Rp

(MeV)

where r, b, R; and R,, are given by

b=1MeV-fm!
R = 1124} —0.944; "% (i = t,p)

The difference between the Kox and Shen formulae appears at energies below 30 MeV/nucleon. In this region the
Shen formula shows better agreement with the experimental data in most cases.

Tripathi formula

Because the Tripathi formula is also based on the strong absorption model its form is similar to the Kox and Shen
formulae:

B
or = w3 (AY? + AP + 6p)? {1— = } (21.1)
CM

where 79 = 1.1 fm. In the Tripathi formula B and R are given by
_1447,7,
B R

1.2(A3 + A%

1/3
E C/IM

R:T'p+7't+

where r; is the equivalent sphere radius and is related to the ., s ; radius by
r; = 1297 s (1 = p, t).

0 represents the energy-dependent term of the reaction cross section which is due mainly to transparency and Pauli
blocking effects. It is given by

55 = 1.855 + (0.165/ELS) — Cxi + [0.91(Ar — 22,) Z, ) (ApAr)],
where S is the mass asymmetry term given by

A;/3Ai/3

5= AL 4 Al

This is related to the volume overlap of the colliding system. The last term accounts for the isotope dependence of
the reaction cross section and corresponds to the D term in the Kox formula and the second term of R in the Shen
formula.

The term C'k g corresponds to ¢ in Kox and C'(K E) in Shen and is given by
Ck = Dpaui[l — exp(—KE/40)] — 0.292 exp(—K E/792) x cos(0.229K E%-4%3).

Here Dpg,; is related to the density dependence of the colliding system, scaled with respect to the density of the
2C4+12C colliding system:

PA, T PA,

DPaulz' =1.75 .
PAc T PAc
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The nuclear density is calculated in the hard sphere model. Dp,,;; simulates the modifications of the reaction cross
sections caused by Pauli blocking and is being introduced to the Tripathi formula for the first time. The modification of
the reaction cross section due to Pauli blocking plays an important role at energies above 100 MeV/nucleon. Different
forms of Dp,,;; are used in the Tripathi formula for alpha-nucleus and lithium-nucleus collisions. For alpha-nucleus
collisions,

Dpauti = 2.77 — (8.0 x 1072 A4;) + (1.8 x 107°A?) — 0.8/{1 + exp[(250 — K E)/75]}
For lithium-nucleus collisions,
DPauli - DPauli/S-

Note that the Tripathi formula is not fully implemented in GEANT4 and can only be used for projectile energies less
than 1 GeV/nucleon.

Representative Cross Sections

Representative cross section results from the Sihver, Kox, Shen and Tripathi formulae in GEANT4 are displayed in
Table 21.1 and compared to the experimental measurements of Ref. [eal87].

Tripathi Formula for “light” Systems

For nuclear-nuclear interactions in which the projectile and/or target are light, Tripathi et al. [TCaJWW99]
propose an alternative algorithm for determining the interaction cross section (implemented in the new class
G4TripathiLightCrossSection). For such systems, Eq.(21.1) becomes:

op = mr2[AL? + AP 4 6p)? (1 . B ) Xom
Ecm

R¢ is a Coulomb multiplier, which is added since for light systems Eq.(21.1) overestimates the interaction distance,
causing B (in Eq.(21.1)) to be underestimated. Values for R are given in Table 21.2.

E
Xm=1-—Xjexp <X13L>

where:
X1 =283 — (3.1 x 1072) Ap + (1.7 x 107%) A2

except for neutron interactions with *He, for which X is better approximated to 5.2, and the function Sy, is given by:

E
Sp=12+16 {1 — exp <—15)]

For light nuclear-nuclear collisions, a slightly more general expression for C'g is used:

E E
Cgp=D [1 — exp (—Tlﬂ —0.292exp (—792> - cos (0.229E°4%%)

D and T3 are dependent on the interaction, and are defined in tableTable 21.3.
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Table 21.1: Representative total reaction cross sections

Proj. | Target | Elab Exp. Results | Sihver Kox Shen Tripathi
[MeV/n] [mb]
12C 2c 30 1316140 — 1295.04 | 1316.07 | 1269.24
83 965430 — 957.183 | 969.107 | 989.96
200 864+45 868.571 | 885.502 | 893.854 | 864.56
300 858+60 868.571 | 871.088 | 878.293 | 857.414
870! 1939450 868.571 | 852.649 | 857.683 | 939.41
2100" 1 888+49 868.571 | 846.337 | 850.186 | 936.205
2TAl 30 1748485 — 1801.4 1777.75 | 1701.03
83 1397+40 — 1407.64 | 1386.82 | 1405.61
200 1270+£70 1224.95 | 1323.46 | 1301.54 | 1264.26
300 12204+85 1224.95 | 1306.54 | 1283.95 | 1257.62
89y 30 27244300 — 2898.61 | 2725.23 | 2567.68
83 21244140 — 2478.61 | 2344.26 | 2346.54
200 18854120 2156.47 | 2391.26 | 2263.77 | 2206.01
300 1885+150 2156.47 | 2374.17 | 2247.55 | 2207.01
160 | 27Al 30 1724+80 — 1965.85 | 1935.2 1872.23
89y 30 27074330 — 3148.27 | 2957.06 | 2802.48
2ONe | 27Al 30 2113£100 — 2097.86 | 2059.4 | 2016.32
100 1446+120 1473.87 | 1684.01 | 1658.31 | 1667.17
300 13284120 1473.87 | 1611.88 | 1586.17 | 1559.16
1080 | 300 24074£200% | 2730.69 | 3095.18 | 2939.86 | 2893.12

1. Data measured by Jaros et al. [eal78]
2. Natural silver was used in this measurement.

Table 21.2: Coulomb multiplier for light systems [had-

RefTripathiLight].
System Rc
p+d 13.5
p +°He 21
p+ *He 27
p+Li 2.2
d+d 13.5
d + *He 13.5
d+C 6.0
He+Ta | 0.6
He+Au | 0.6
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Table 21.3:  Parameters D and TI1 for light systems [had-
RefTripathiLight].
System T1 D G [MeV] (*He + X
[MeV] only)
p+X 23 1.85 + I?(I%OOBE) (Not applicable)
n+ X 18 1.85 + 016 (Not applicable)
H"CXpé I 200 ) i
d+X 23 1.65 + oo ('502005 2y (Not applicable)
3He + X)* 40 1.55 (Not applicable)
4He + 4He 40 2.77—8.0x 1073AT +18X1075A% —% 300
ex G
‘He + Be 25 (as for *He + THe) 300
‘He + N 40 (as for “He + “He) 500
1He + Al 25 (as for He + THe) 300
‘He + Fe 40 (as for “He + “He) 300
He + X (gen- | 40 (as for *He + “He) 75
eral)
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CHAPTER
TWENTYTWO

COHERENT ELASTIC SCATTERING

22.1 Nucleon-Nucleon elastic Scattering

The classes G4LEpp and G4LEnp provide data-driven models for proton-proton (or neutron-neutron) and neutron-
proton elastic scattering over the range 10-1200 MeV. Final states (primary and recoil particle) are derived by sampling
from tables of the cumulative distribution function of the centre-of-mass scattering angle, tabulated for a discrete set
of lab kinetic energies from 10 MeV to 1200 MeV. The CDF’s are tabulated at 1 degree intervals and sampling is done
using bi-linear interpolation in energy and CDF values. The data are derived from differential cross sections obtained
from the SAID database, R. Arndt, 1998.

In class G4LEpp there are two data sets: one including Coulomb effects (for p-p scattering) and one with
no Coulomb effects (for n-n scattering or p-p scattering with Coulomb effects suppressed). The method
G4LEpp::SetCoulombEffects can be used to select the desired data set:

¢ SetCoulombEffects(0): No Coulomb effects (the default)
¢ SetCoulombEffects(1): Include Coulomb effects

The recoil particle will be generated as a new secondary particle. In class G4LEnp, the possiblity of a charge-exchange
reaction is included, in which case the incident track will be stopped and both the primary and recoil particles will be
generated as secondaries.
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CHAPTER
TWENTYTHREE

HADRON-NUCLEUS ELASTIC SCATTERING AT MEDIUM AND HIGH
ENERGY

23.1 Method of Calculation

The Glauber model [Gla70] is used as an alternative method of calculating differential cross sections for elastic and
quasi-elastic hadron-nucleus scattering at high and intermediate energies.

For high energies this includes corrections for inelastic screening and for quasi-elastic scattering the exitation of a
discrete level or a state in the continuum is considered.

The usual expression for the Glauber model amplitude for multiple scattering was used

F(q) = % / d2be?b M (D). (23.1)

-,

Here M (b) is the hadron-nucleus amplitude in the impact parameter representation
- S e = 1A
M) =1- [1 _eAS d*rT(b—s)p(7) , (23.2)

k is the incident particle momentum, ¢ = k' — k is the momentum transfer, and k' is the scattered particle momentum.

-,

Note that |cﬂ2 = —t - invariant momentum transfer squared in the center of mass system. I'(b) is the hadron-nucleon
amplitude of elastic scattering in the impact-parameter representation

- 1 -
I'(b) = ——x [ dge " f(q). 233
)= 5w [ 4@ 233)
The exponential parameterization of the hadron-nucleon amplitude is usually used:
k"N N
=2 7 08B (23.4)
Here oY = ol (1—ia)olY is the total cross section of a hadron-nucleon scattering, B is the slope of the diffraction

cone and « is the ratio of the real to imaginary parts of the amplitude at ¢ = 0. The value k¥ is the hadron momentum
in the hadron-nucleon coordinate system.

The important difference of these calculations from the usual ones is that the two-gaussian form of the nuclear density
was used

p(r) = C (efwmf _ p(;sz)?) ’ (23.5)

where Ry Ry and p are the fitting parameters and C' is a normalization constant.

This density representation allows the expressions for amplitude and differential cross section to be put into analytical
form. It was earlier used for light [BW68][Cho68][NGG+78][BDK+81] and medium [KS83][EKS81] nuclei. De-
scribed below is an extension of this method to heavy nuclei. The form (23.5) is not physical for a heavy nucleus, but
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nevertheless works rather well (see figures below). The reason is that the nucleus absorbs the hadrons very strongly,
especially at small impact parameters where the absorption is full. As a result only the peripherial part of the nucleus
participates in elastic scattering. Eq. (23.5) therefore describes only the edge of a heavy nucleus.

Substituting Eqgs. (23.5) and (23.4) into Egs. (23.1), (23.2) and (23.3) yields the following formula

-5 £ it (O ]

k=1 m=0

2 —1
s m n k—m
4 (R§+2B R%+2B>

y pR3 1™ m__ k—m \ y .
R2+2B| \RI+2B ' R?+2B P
(23.6)

An analogous procedure can be used to get the inelastic screening corrections to the hadron-nucleus amplitude A M (5)
[NNikolskiiS+77]. In this case an intermediate inelastic diffractive state is created which rescatters on the nucleons of
the nucleus and then returns into the initial hadron. Hence it is nessesary to integrate the production cross section over
the mass distribution of the excited system do®/f /dtdM?. The expressions for the corresponding amplitude are quite
long and so are not presented here. The corrections for the total cross-sections can be found in [NNikolskiiS+77].

The full amplitude is the sum M (b) + AM (b).

The differential cross section is connected with the amplitude in the following way

do 9 do do s 9
—|F , — = = —|F ) 23.7

The main energy dependence of the hadron-nucleus elastic scattering cross section comes from the energy dependence
d
of the parameters of hadron-nucleon scattering (o’ o B and df - M2
fixed at their well-known values. The fitting of the nuclear densny parameters was performed over a wide range of
atomic numbers (A = 4 — 208) using experimental data on proton-nuclei elastic scattering at a kinetic energy of

T, = 1GeV.

) At interesting energies these parameters were

The fitting was perfomed both for individual nuclei and for the entire set of nuclei at once. It is necessary to note that
for every nucleus an optimal set of density parameters exists and it differs slightly from the one derived for the full set
of nuclei.

A comparision of the phenomenological cross sections [ABV78] with experiment is presented in Fig. 23.1 - Fig. 23.9.

In this comparison, the individual nuclei parameters were used. The experimental data were obtained in Gatchina
(Russia) and in Saclay (France) [ABV78]. The horizontal axis is the scattering angle in the center of mass system

O©¢ and the vertical axis is déi in mb/Ster. Comparisions were also made for p*He elastic scatering at T = 1
GeV [7], 45 GeV and 301 GeV [3]. The resulting cross sections W are shown in Fig. 23.10 - Fig. 23.12.
In order to generate events the distribution function F of a corresponding process must be known. The differential

cross section is proportional to the density distribution. Therefore to get the distribution function it is sufficient to
integrate the differential cross section and normalize it:

do
d 2
0/ (q )d(q2)
Flg?) = = (23.8)

Expressions (23.6) and (23.7) allow analytic integration in Eq. (23.8) but the result is too long to be given here.

For light and medium nuclei the analytic expression is more convenient for calculations than the numerical integration
of Eq. (23.8), but for heavy nuclei the latter is preferred due to the large number of terms in the analytic expression.
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Elastic scattering p—Be9 at T=1 GeV

do/dQ, mb/Ster
T T \|\\H‘

’] O I

Fig. 23.1: Elastic proton scattering on *Be at 1 GeV.
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104 Elastic scattering p—B11 at T=1 GeV
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Fig. 23.2: Elastic proton scattering on !'B at 1 GeV.
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Elastic scattering p—C12 at T=1 GeV

do/dQ, mb/Ster
T T \|\\H‘

10

’]OZ\J\\‘\\\\‘\\II‘I\\\\‘\\\Jil\\\‘\\\Jill\\‘\\\\‘\}\\
0 2.5 5 75 10 125 15 175 20 225 25

)

Fig. 23.3: Elastic proton scattering on '>C at 1 GeV.
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Elastic scattering p—016 at T=1 GeV

do/dQ, mb/Ster
\\\\H\‘ T T T TTTT

10

Fig. 23.4: Elastic proton scattering on '°O at 1 GeV.
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Elastic scattering p—Si28 at T=1 GeV

do/dQ, mb/Ster
o
~

Fig. 23.5: Elastic proton scattering on 28Si at 1 GeV.
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Elastic scattering p—Ca40 at T=1 GeV

do/dQ, mb/Ster
T T \\\H\‘

10

Fig. 23.6: Elastic proton scattering on “’Ca at 1 GeV.
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Elastic scattering p—Ni58 at T=1 GeV

do/dQ, mb/Ster
T \\\\H‘

’] O I

Fig. 23.7: Elastic proton scattering on *®*Ni at 1 GeV.
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Flastic scattering p—7r90 at T=1 GeV

do/dQ, mb/Ster
T T T TTTTT T \\\HH‘ T \\\HH‘ T \\\HH‘ T \\\HH‘

Fig. 23.8: Elastic proton scattering on *°Zr at 1 GeV.
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Elastic scattering p—Pb208 at T=1 GeV

(@)
o]

do/dQ, mb/Ster

Fig. 23.9: Elastic proton scattering on 2%Pb at 1 GeV.
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Elastic scattering p—He4 at T=1 GeV

do/d(

103\\\\‘\\\\‘\\Il‘l\\\\‘\\\Jil\\\‘\\\Jil[\\‘\\\\‘\J
0 01 02 03 04 05 06 07 08 09 1

—t, (GeV/c)?

Fig. 23.10: Elastic proton scattering on *He at 1 GeV.
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Elastic scattering p—He4 at T=45 GeV

do/d(

’IOS\J\\‘\\\\‘\\Ili\\\\‘\\\Jil\\\‘\\\Jill\\‘\\\\‘J]\\
0 01 02 03 04 05 06 07 08 09 1

—t, (GeV/c)?

Fig. 23.11: Elastic proton scattering on “He at 45 GeV.
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do/d(

Elastic scattering p—He4 at T=301 GeV

3
10 ‘

\\\‘\\\\‘ \III\\\\‘\\\Jll\\\‘\\\Jll[\\‘\\\\‘\}\\

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
—t, (GeV/c)?

Fig. 23.12: Elastic proton scattering on “He at 301 GeV.
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CHAPTER
TWENTYFOUR

PARTON STRING MODEL

24.1 Reaction initial state simulation.

24.1.1 Allowed projectiles and bombarding energy range for interaction with nu-
cleon and nuclear targets

The GEANT4 parton string models are capable to predict final states (produced hadrons which belong to the scalar
and vector meson nonets and the baryon (antibaryon) octet and decuplet) of reactions on nucleon and nuclear targets
with nucleon, pion and kaon projectiles. The allowed bombarding energy /s > 5 GeV is recommended. Two
approaches, based on diffractive excitation or soft scattering with diffractive admixture according to cross-section, are
considered. Hadron-nucleus collisions in the both approaches (diffractive and parton exchange) are considered as a
set of the independent hadron-nucleon collisions. However, the string excitation procedures in these approaches are
rather different.

24.1.2 MC initialization procedure for nucleus

The initialization of each nucleus, consisting from A nucleons and Z protons with coordinates r; and momenta p;,
where i = 1,2, ..., A is performed. We use the standard initialization Monte Carlo procedure, which is realized in the
most of the high energy nuclear interaction models:

* Nucleon radii r; are selected randomly in the rest of nucleus according to proton or neutron density p(r;). For
heavy nuclei with A > 16 [GLMP91] nucleon density is

Po
1+expl(r; — R)/d]

3 a?r?\
= 1 .
PO rRs ( TR )
Here R = r9AY/3 fmand ro = 1.16(1 — 1.16A=%/3) fm and a ~ 0.545 fm. For light nuclei with A < 17
nucleon density is given by a harmonic oscillator shell model [B61], e. g.

p(ri) =

where

p(ri) = (nR?) ™3/ exp (-7 / R?),

where R? = 2/3(r?) = 0.81334%/3 fm?. To take into account nucleon repulsive core it is assumed that
internucleon distance d > 0.8 fm;

* The initial momenta of the nucleons are randomly choosen between 0 and pz**, where the maximal momenta
of nucleons (in the local Thomas-Fermi approximation [DA74]) depends from the proton or neutron density p
according to

pnFmax _ hc(3W2p>1/3
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with hc = 0.197327 GeV fm;

* To obtain coordinate and momentum components, it is assumed that nucleons are distributed isotropicaly in
configuration and momentum spaces;

* Then perform shifts of nucleon coordinates ry = rj —1/A >, r; and momenta pj = p; —1/A ", p; of nucleon

momenta. The nucleus must be centered in configuration space around 0, i. e. ), r; = 0 and the nucleus must
be at rest, i. e. >, p; = 0;

* We compute energy per nucleon e = E/A = my + B(A, Z)/A, where my is nucleon mass and the nucleus
binding energy B(A, Z) is given by the Bethe-Weizsicker formula [BA69]:

A
B(A,Z) = —0.01587A + 0.01834A%/3 4 0.09286(Z — 5)2 +0.0007122% /A3,

and find the effective mass of each nucleon mef F = \/(EJA)? = p?.

24.1.3 Random choice of the impact parameter
The impact parameter 0 < b < R; is randomly selected according to the probability:
P(b)db = bdb,

where R; is the target radius, respectively. In the case of nuclear projectile or target the nuclear radius is determined
from condition:
p(R)

m = 0.01.

24.2 Sample of collision participants in nuclear collisions.

24.2.1 MC procedure to define collision participants.

The inelastic hadron—nucleus interactions at ultra—relativistic energies are considered as independent hadron—-nucleon
collisions. It was shown long time ago [AA78] for the hadron—nucleus collision that such a picture can be obtained
starting from the Regge—Gribov approach [MA76], when one assumes that the hadron-nucleus elastic scattering am-
plitude is a result of reggeon exchanges between the initial hadron and nucleons from target-nucleus. This result leads
to simple and efficient MC procedure [S86][ANS90] to define the interaction cross sections and the number of the
nucleons participating in the inelastic hadron—nucleus collision:

* We should randomly distribute B nucleons from the target-nucleus on the impact parameter plane according
to the weight function 7' ([bf ])- This function represents probability density to find sets of the nucleon impact

parameters [bB] where j = 1,2, ..., B.

* For each pair of projectile hadron ¢ and target nucleon j with choosen impact parameters B; and l;f we should
check whether they interact inelastically or not using the probability p; ; (b; — gf ,8), where s;; = (p; +pj)? is
the squared total c.m. energy of the given pair with the 4-momenta p; and p;, respectively.

In the Regge—Gribov approach [MA76] the probablhty for an inelastic collision of pair of ¢ and j as a function at the
squared impact parameter difference b2 (b — bB )2 and s is given by

Dij (l; bB s) = [1 —exp {—2u(b

B Zp ,5), (24.1)
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where

2u(, 9" 042

P (B = 7. 5) = ¢ exp {~2u(bl;, )} —

is the probability to find the n cut Pomerons or the probability for 2n strings produced in an inelastic hadron-nucleon
collision. These probabilities are defined in terms of the (eikonal) amplitude of hadron—nucleon elastic scattering with
Pomeron exchange:

u(t?.8) = “ exp(-83 /7).

The quantities z(s) and A(s) are expressed through the parameters of the Pomeron trajectory, o/P =0.25 GeV 2 and
ap(0) = 1.0808, and the parameters of the Pomeron-hadron vertex Rp and yp:

s 2071:’ s ap(0)—
(s) = s )( /0)
A(s) = R% + ap In(s/so),

respectively, where s¢ is a dimensional parameter.

In Egs. (24.1),(24.2) the so—called shower enhancement coefficient c is introduced to determine the contribution
of diffractive dissociation [MA76]. Thus, the probability for diffractive dissociation of a pair of nucleons can be
computed as

c—1 .07 = -
pz](b bB ): c [pijt(biibijs)7pij(bi7b]‘B’3)}7

where

Pt (b — b7 5) = (2/0)[1 — exp{—u(bi;, s)}].
The Pomeron parameters are found from a global fit of the total, elastic, differential elastic and diffractive cross

sections of the hadron—nucleon interaction at different energies.

For the nucleon-nucleon, pion-nucleon and kaon-nucleon collisions the Pomeron vertex parameters and shower en-
hancement coefficients are found: R?DN = 3.56 GeVﬁQ, vg = 3.96 GeV72, sév = 3.0 GeV2, ¢V = 1.4 and
R =2.36GeV ™2, 4% = 2.17GeV ™2, and R = 1.96 GeV 2,75 =1.92GeV 2, s{f = 2.3GeV?, ¢ = 1.8.

24.2.2 Separation of hadron diffraction excitation.

For each pair of target hadron ¢ and projectile nucleon j with choosen impact parameters b; and 1_933 we should check
whether they interact inelastically or not using the probability

pw(b *b ,8) = pij(bi — b )+Pzg(bA*bB s).
If interaction will be realized, then we have to consider it to be diffractive or nondiffractive with probabilities

P (bi = b7, s)
pz] (b _bB )

and

—

pij(bi — bE, 5)
pn(br — b, s)

7 7

24.2. Sample of collision participants in nuclear collisions. 281



Physics Reference Manual, Release 10.7

24.3 Longitudinal string excitation

24.3.1 Hadron—-nucleon inelastic collision

Let us consider collision of two hadrons with their c. m. momenta P, = {E] ,m?/E{ 0} and P, =
{E; ,m3/E; ,0}, where the light-cone variables Eljfz = FE1 2 & P, 2 are defined through hadron energies Eq o =

A /mi2 + Pz21,2’ hadron longitudinal momenta P, » and hadron masses m o, respectively. Two hadrons collide by
two partons with momenta p; = {x* E}",0,0} and p» = {0, 2~ E; , 0}, respectively.

24.3.2 The diffractive string excitation

In the diffractive string excitation (the Fritiof approach [AB87]) only momentum can be transferred:

Pl =P +gq
P2/ = P2 —q,
where
¢={-q;/(¢" E3y),q}/(z* E), ac} (24.3)

is parton momentum transferred and q is its transverse component. We use the Fritiof approach to simulate the
diffractive excitation of particles.

24.3.3 The string excitation by parton exchange

For this case the parton exchange (rearrangement) and the momentum exchange are allowed
[KAB82][AULI94][S86][ANS90]:

Pl =P —p1+p2+q

, (24.4)
Py =P, +p1 —p2 —gq,

where ¢ = {0,0,q¢} is parton momentum transferred, i. e. only its transverse components ¢¢ = 0 is taken into
account.

24.3.4 Transverse momentum sampling
The transverse component of the parton momentum transferred is generated according to probability
a
P(ac)da = |/ — exp (—agf)dat, (24.5)

where parameter a = 0.6 GeV~2.

24.3.5 Sampling x-plus and x-minus

Light cone parton quantities 7 and z~ are generated independently and according to distribution:

u(z) ~ z%(1 — )P, (24.6)
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where # = % or x = z~. Parameters « = —1 and 8 = 0 are chosen for the FRITIOF approach [AB87]. In the
case of the QGSM approach [S86][ANS90] « = —0.5 and 8 = 1.5 or 5 = 2.5. Masses of the excited strings should
satisfy the kinematical constraints:

PYPT > mi +qf (24.7)
and
Py Py > miy + g7, (24.8)

where hadronic masses mp; and mys (model parameters) are defined by string quark contents. Thus, the random
selection of the values x* and =~ is limited by above constraints.

24.3.6 The diffractive string excitation

In the diffractive string excitation (the FRITIOF approach [AB87]) for each inelastic hadron—nucleon collision we
have to select randomly the transverse momentum transferred q. (in accordance with the probability given by Eq.
(24.5) and select randomly the values of 2% (in accordance with distribution defined by Eq. (24.6). Then we have to
calculate the parton momentum transferred ¢ using Eq. (24.3) and update scattered hadron and nucleon or scatterred
nucleon and nucleon momenta using Eq. (24.4). For each collision we have to check the constraints (24.7) and (24.8),
which can be written more explicitly:

-

and

2 2 2
_ q; mj a3 2 2
E5 + — — >mp, +q;.
{ 2 £EE2:| {EQ x*Ef] = Mh1 T Gt

24.3.7 The string excitation by parton rearrangement

In this approach [S86][ANS90] strings (as result of parton rearrangement) should be spanned not only between valence
quarks of colliding hadrons, but also between valence and sea quarks and between sea quarks. The each participant
hadron or nucleon should be splitted into set of partons: valence quark and antiquark for meson or valence quark
(antiquark) and diquark (antidiquark) for baryon (antibaryon) and additionaly the (n — 1) sea quark-antiquark pairs
(their flavours are selected according to probability ratios w : d : s = 1 : 1 : 0.35), if hadron or nucleon is participating
in the n inelastic collisions. Thus for each participant hadron or nucleon we have to generate a set of light cone
variables xo,,, where z,, = x;n Or Ta, = %5, according to distribution:

2n 2n
M@y, @, m90) = fo HuZ(xzﬁ(l - sz),
i=1 i=1

h

where fj is the normalization constant. Here, the quark structure functions wuy,

sea quark and antiquark g5 and valence diquark (antidiquark) qq are:

(z;) for valence quark (antiquark) g,,

ug (w) = 257, ug (25) = 23°, ugy(vqq) = what,

where o, = —0.5 and oy = —0.5 [KAB82] for the non-strange quarks (antiquarks) and o, = 0 and s = 0 for
strange quarks (antiquarks), 3,, = 1.5 and 8,4 = 2.5 for proton (antiproton) and 343 = 1.5 and 8,4 = 2.5 for
neutron (antineutron). Usualy x; are selected between :CZ’”” < z; < 1, where model parameter ™™ is a function of
initial energy, to prevent from production of strings with low masses (less than hadron masses), when whole selection
procedure should be repeated. Then the transverse momenta of partons q;¢ are generated according to the Gaussian
probability Eq. (24.5) with a = 1/4A(s) and under the constraint: Zle qit = 0. The partons are considered as the
off-shell partons, i. e. m? # 0.
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24.4 Longitudinal string decay.

24.4.1 Hadron production by string fragmentation.

A string is stretched between flying away constituents: quark and antiquark or quark and diquark or diquark and
antidiquark or antiquark and antidiquark. From knowledge of the constituents longitudinal ps; = p.; and transversal
Dii = Pzi> D2i = Py; Mmomenta as well as their energies po; = Fj;, where ¢ = 1,2, we can calculate string mass
squared:

Mg = pp, = py — v — p3 — D3,

where p,, = py1 + P2 is the string four momentum and ¢ = 0,1, 2, 3.

The fragmentation of a string follows an iterative scheme:
string = hadron + new string,

i.e. a quark-antiquark (or diquark-antidiquark) pair is created and placed between leading quark-antiquark (or diquark-
quark or diquark-antidiquark or antiquark-antidiquark) pair.

The values of the strangeness suppression and diquark suppression factors are
u:d:s:qqg=1:1:0.35:0.1.

A hadron is formed randomly on one of the end-points of the string. The quark content of the hadrons determines
its species and charge. In the chosen fragmentation scheme we can produce not only the groundstates of baryons and
mesons, but also their lowest excited states. If for baryons the quark-content does not determine whether the state
belongs to the lowest octet or to the lowest decuplet, then octet or decuplet are choosen with equal probabilities. In
the case of mesons the multiplet must also be determined before a type of hadron can be assigned. The probability of
choosing a certain multiplet depends on the spin of the multiplet.

The zero transverse momentum of created quark-antiquark (or diquark-antidiquark) pair is defined by the sum of an
equal and opposite directed transverse momenta of quark and antiquark.

The transverse momentum of created quark is randomly sampled according to probability (24.5) with the parameter
a = 0.25 GeV 2. Then a hadron transverse momentum p; is determined by the sum of the transverse momenta of its
constituents.

The fragmentation function f"(z,p,) represents the probability distribution for hadrons with the transverse momenta
pt to acquire the light cone momentum fraction z = z* = (E" £ pl/(EY + p?), where E” and E are the hadron
and fragmented quark energies, respectively and p” and p? are hadron and fragmented quark longitudinal momenta,
respectively, and 25, < z* <z from the fragmenting string. The values of Zim,max are determined by hadron
my, and constituent transverse masses and the available string mass. One of the most common fragmentation function
is used in the LUND model [BGGTS83]:
2 2
fh(Z,pt) ~ %(1 _ Z)a exp |:_b(7nhz+pf):| .

One can use this fragmentation function for the decay of the excited string.

One can use also the fragmentation functions are derived in [B87]:

FECpe) = [1+ Q2 (pe))](1 = ) (P,

The advantage of these functions as compared to the LUND fragmentation function is that they have correct
three—reggeon behaviour at z — 1 [B87].
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24.4.2 The hadron formation time and coordinate.

To calculate produced hadron formation times and longitudinal coordinates we consider the (1 + 1)-string with mass
Mg and string tension «, which decays into hadrons at string rest frame. The i-th produced hadron has energy E; and
its longitudinal momentum p,;, respectively. Introducing light cone variables pii = FE; £ p;, and numbering string

breaking points consecutively from right to left we obtain pj = Mg, p = k(2" | — 2;7) and p; = Kz .

We can identify the hadron formation point coordinate and time as the point in space-time, where the quark lines of
the quark-antiquark pair forming the hadron meet for the first time (the so-called "yo-yo’ formation point [BGGT83]):

i—1
ti:i MS_Qszj+Ei_pzi
L J=1
and coordinate
1 [ i—1
Zz:ﬂ M5—2;Ej+pzi—Ei

24.4. Longitudinal string decay. 285
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CHAPTER
TWENTYFIVE

FRITIOF (FTF) MODEL

25.1 Introduction

The Fritiof model, or FTF for short, is used in GEANT4 for simulation of the following interactions: hadron-nucleus at
Pip > 3—4 GeV/c, nucleus-nucleus at Py, > 2-3 GeV/c/nucleon, antibaryon-nucleus at all energies, and antinucleus-
nucleus. Because the model does not include multi-jet production in hadron-nucleon interactions, the upper limit of
its validity range is estimated to be 1000 GeV/c per hadron or nucleon.

The model assumes that one or two unstable objects (quark-gluon strings) are produced in elementary interactions. If
only one object is created, the process is called diffraction dissociation. It is assumed also that the objects can interact
with other nucleons in hadron-nucleus and nucleus-nucleus collisions, and can produce other objects. The number of
produced objects in these non-diffractive interactions is proportional to the number of participating nucleons. Thus,
multiplicities in the hadron-nucleus and nucleus-nucleus interactions are larger than those in elementary ones.

The modeling of hadron-nucleon interactions in the FTF model includes simulations of elastic scattering, binary
reactions like NN — NA, 7N — 7w/, single diffractive and non-diffractive events, and annihilation in antibaryon-
nucleon interactions. It is assumed that the unstable objects created in hadron-nucleus and nucleus-nucleus collisions
can have analogous reactions.

Parameterizations of the CHIPS GEANT4 model are used for calculations of elastic and inelastic hadron-nucleon cross
sections. Data-driven parameterizations of the binary reaction cross sections and the diffraction dissociation cross
sections in the elementary interactions are implemented in the FTF model. It is assumed in the model that the unstable
object cross sections are equal to the cross sections of stable objects having the same quark content.

The LUND string fragmentation model is used for the simulation of unstable object decays. The formation time of
hadrons is considered also. Parameters of the fragmentation model were tuned to experimental data. A restriction of
the available phase space is taken into account in low mass string fragmentation.

A simplified Glauber model is used for sampling the multiplicity of intra-nuclear collisions. Gribov inelastic screening
is not considered. For medium and heavy nuclei a Saxon-Woods parameterization of the one-particle nuclear density is
used, while for light nuclei a harmonic oscillator shape is used. Center-of-mass correlations and short range nucleon-
nucleon correlations are taken into account.

The reggeon theory inspired model (RTIM) of nuclear destruction is applied for a description of secondary particle
intra-nuclear cascading. A new algorithm to simulate “Fermi motion” in nuclear reactions is used.

Excitation energies of residual nuclei are estimated in the wounded nucleon approximation. This allows for a direct
coupling of the FTF model to the Precompound model of GEANT4 and hence with the GEM nuclear fragmentation
model. The determination of the particle formation time allows one to couple the FTF model with the Binary cascade
model of GEANT4 (The Binary Cascade Model).
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25.1.1 Main assumptions of the FTF model

The Fritiof model [eal87][BNilssonAEStenlund87] assumes that all hadron-hadron interactions are binary reactions,
hi + ha — h} + h%, where h) and h), are excited states of the hadrons with discrete or continuous mass spectra (see
Fig. 25.1). If one of the final hadrons is in its ground state (h; +ho — hy + h%) the reaction is called “single diffraction
dissociation”, and if neither hadron is in its ground state it is called a “non-diffractive” interaction. (Notice that, in
spite of its name, this definition of “non-diffractive” interaction includes the double diffraction dissociation as well.)

Fig. 25.1: Non-diffractive and diffractive interactions considered in the Fritiof model.

The excited hadrons are considered as QCD-strings, and the corresponding LUND-string fragmentation model is
applied in order to simulate their decays.

The key ingredient of the Fritiof model is the sampling of the string masses. In general, the set of final state of
interactions can be represented by Fig. 25.2, where samples of possible string masses are shown. There is a point
corresponding to elastic scattering, a group of points which represents final states of binary hadron-hadron interactions,
lines corresponding to the diffractive interactions, and various intermediate regions. The region populated with the
red points is responsible for the non-diffractive interactions. In the model, the mass sampling threshold is set equal to
the ground state hadron masses, but in principle the threshold can be lower than these masses. The string masses are
sampled in the triangular region restricted by the diagonal line corresponding to the kinematical limit M1 +Ms = Ep, 5
where M, and My are the masses of the k) and h/, hadrons, and also of the threshold lines. If a point is below the
string mass threshold, it is shifted to the nearest diffraction line.

String mass threshold M1+M2 <=E

cms
Target diffraction

4 Binary channels
- E N (NN',N'N"...)
3 %
F—
3 E;) M1+M2=Ecms
A=
M g
2 S Projectile diffraction
2+ 2 .
g )t y String mass threshold
o ® ®
£
1+- @ oo Z \\
/ String mass sampling threshold
0 1 1 1 1
0 / 1 2 3 4
Elastic scattering M1

Fig. 25.2: Diagram of the final states of hadron-hadron interactions.
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Unlike the original Fritiof model, the final state diagram of the current model is complicated, which leads to a mass
sampling algorithm that is not simple. This will be considered below. The original model had no points corresponding
to elastic scattering or to the binary final states. As it was known at the time, the mass of an object produced by
diffraction dissociation, M, for example from the reaction p + p — p + X, is distributed as dM,. /M, erQ /M;f,
so it was natural to assume that the object mass distributions in all inelastic interactions obeyed the same law. This can
be re-written using the light-cone momentum variables, P or P,

P*=E+4p., P =E—-p.

where E is an energy of a particle, and p, is its longitudinal momentum along the collision axis. At large energy and
positive p,, P~ ~ (M? + P%)/2p,. Atnegative p,, Pt ~ (M? + P2)/2|p.|. Usually, the transferred transverse
momentum, Pr, is small and can be neglected. Thus, it was assumed that P~ and P of a projectile, or target
associated hadron, respectively, are distributed as

dP~/P~, dp*/pP*

A gaussian distribution was used to sample Pr.

In the case of hadron-nucleus or nucleus-nucleus interactions it was assumed that the created objects can interact
further with other nuclear nucleons and create new objects. Assuming equal masses of the objects, the multiplicity of
particles produced in these interactions will be proportional to the number of participating nuclear nucleons, or to the
multiplicity of intra-nuclear collisions. Due to this, the multiplicity of particles produced in hadron-nucleus or nucleus-
nucleus interactions is larger than that in hadron-hadron ones. The probabilities of multiple intra-nuclear collisions
were sampled with the help of a simplified Glauber model. Cascading of secondary particles was not considered.

Because the Fermi motion of nuclear nucleons was simulated in a simple manner, the original Fritiof model could not
work at Py, < 10-20 GeV/e.

It was assumed in the model that the created objects are quark-gluon strings with constituent quarks at their ends orig-
inating from the primary colliding hadrons. Thus, the LUND-string fragmentation model was applied for a simulation
of the object decays. It was assumed also that the strings with sufficiently large masses have “kinks” — additional
radiated gluons. This was very important for a correct reproduction of particle multiplicities in the interactions.

All of the above assumptions were reconsidered in the implementation of the GEANT4 Fritiof model, and new features
were added. These will be presented below.

25.1.2 General properties of hadron—nucleon interactions

Before going into details of the FTF model implementation it would be better to consider briefly the general properties
of hadron-nucleon interactions in order to understand what needs to be simulated. These properties include total and
elastic cross sections, and cross sections of various other reactions. There is so much data on inclusive spectra that
not all of it can be addressed in this work. It is hoped that the remaining data will be the subject of a future paper.
Inclusive data present kinematical properties of produced particles. Their description requires additional methods and
parameters, which will be considered later.

w~ p interactions

Total, elastic and reaction cross sections of 7~ p-interactions are presented in Fig. 25.3. As seen, there are peaks in
the total cross section connected with A-isobar production (A(1232), A(1600), A(1700) and so on) in the s-channel,
7~ 4+ p — AL, The main channel of a A%-isobar decay is A® — 7~ + p. These resonances are reflected in the
elastic cross section. The other important decay channel is A° — 70 4 n, which is the main inelastic reaction
channel at P,;, < 700 MeV/c. At higher energy two-meson production channels start to dominate, and at Py, > 3
GeV/c there is practically no structure in the cross sections. Cross sections of final states with defined charged particle
multiplicity, so-called prong cross sections according to the old terminology, are presented in the last figure. As seen,
real multi-particle production processes (n > 4) dominate at P, > 5-7 GeV/c.
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Fig. 25.3: General properties of 7~ p-interactions. Points are experimental data: data on total and elastic cross
sections from PDG data-base [PDG12], other data from [eal72].

In the constituent quark model of hadrons, the creation of s-channel A-isobars is explained by quark—antiquark anni-
hilation (see Fig. 25.4a). The production of two mesons may result from quark exchange (see Fig. 25.4b, Fig. 25.4¢).
A quark—diquark (g—qq) system created in the process can be in a resonance state (Fig. 25.4b), or in a state with a
continuous mass spectrum (Fig. 25.4¢). In the latter case, multi-meson production is possible. Amplitudes of these
two channels are connected by crossing symmetry to annihilation in the ¢-channel, and with non-vacuum exchanges in
the elastic scattering according to the reggeon phenomenology. According to that phenomenology, pomeron exchange
must dominate in elastic scattering at high energies. In a simple approach, this corresponds to two-gluon exchange
between colliding hadrons. It reflects also one or many non-perturbative gluon exchanges in the inelastic reaction. Due
to these exchanges, a state with subdivided colors is created (see Fig. 25.4d). The state can decay into two colorless
objects. The quark content of the objects coincides with the quark content of the primary hadrons, according to the
FTF model, or it is a mixture of the primary hadron’s quarks, according to the Quark-Gluon-String model (QGSM).

q 3 i 3
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a
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a b c d

Fig. 25.4: Quark flow diagrams of wN -interactions.

The original Fritiof model contains only the pomeron exchange process shown in Fig. 25.4d. It would be useful to
extend the model by adding the exchange processes shown in Fig. 25.4b and Fig. 25.4¢, and the annihilation process
of Fig. 25.4a. This could probably be done by introducing a restricted set of mesonic and baryonic resonances and
a corresponding set of parameters. This procedure was employed in The Binary Cascade Model of GEANT4 (BIC)
[FIW04] and in the Ultra-Relativistic-Quantum-Molecular-Dynamic model (UrQMD) [eal98][eal99] (see Quantum
Molecular Dynamics for Heavy Ions). However, it is complicated to use this solution for a simulation of hadron-
nucleus and nucleus-nucleus interactions. The problem is that one has to consider resonance propagation in the
nuclear medium and take into account their possible decays which enormously increases computing time. Thus, in the
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current version of the FTF model only quark exchange processes have been added to account for meson and baryon
interactions with nucleons, without considering resonance propagation and decay. This is a reasonable hypothesis at
sufficiently high energies.

7Tp interactions
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Fig. 25.5: General properties of wp-interactions. Points are experimental data: data on total and elastic cross
sections from PDG data-base [PDG12], other data from [eal72].

Total, elastic and reaction cross sections of 7+ p-interactions are presented in Fig. 25.5. As seen, there are fewer peaks
in the total cross section than in 7~ p-collisions. The creation of A" -isobars in the s-channel (7+ +p — ATT)is
mainly seen in the elastic cross section because the main channel of A" -isobar decay is A™" — 7+ +p. This process
is due to quark—antiquark annihilation. At P4, > 400 MeV/c two-meson production channels appear. They can be
connected with quark exchange and with the formation of A** and A" isobars at the proton site. The corresponding
cross sections of the reactions — 77 +p = 0 + ATt 5 DO 47t 4+ p. v +p - 77 + AT = 7t + 70 4 p,
7t +p = 7t + At = 7t 4 7+ 4 n have structures at P, ~ 1.5 and 2.8 GeV/c. At higher energies there is no
structure. The cross sections of other reactions are rather smooth.

pp interactions

Total, elastic and reaction cross sections of pp-interactions are presented in Fig. 25.6. The total cross section is
seen to decrease with energy below the meson production threshold (P, < 800 MeV/c). Above the threshold
the cross section starts to increase and becomes nearly constant. The main reaction channel below 6-8 GeV/c is
p+p — p+n+ wt. Because there cannot be quark—antiquark annihilation in the interaction, the reaction must
be connected to quark exchange. Intermediate states canbe p +p — p + AT and p + p — n + ATF. In the first
case, quarks of the same flavor in the projectile and the target are exchanged. In the second case quarks with different
flavors take part in the exchange. Because the cross section of the p + p — p +n + 7T reaction is larger than the that
of p+p — p+ p + 7°, one has to assume that the exchange of quarks with the same flavors is suppressed.

All the reactions shown can also be caused by diffraction dissociation. Although there can be a contribution of the
p+p — A%+ A+ reaction into the cross section of the channel p+p — (p+7~ )+ (p+7") at Py, ~ 2-3 GeV/e,
one can assume that diffraction plays an essential role in these interactions, because there are no defined structures in
the cross sections.
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Fig. 25.6: General properties of pp-interactions. Points are experimental data: data on total and elastic cross sections
Jfrom PDG data-base [PDG12], other data from [eal73a][eal84].

Summing up the consideration of the interactions, one can conclude that the probability of quark exchanges can depend
on quark flavors, and that pp-collisions could be a source of information about diffraction.

K*p—-and K~ p interactions

For completeness, the properties of K Tp- and K ~p-interactions are presented. Total and elastic cross sections are
shown in Fig. 25.7. As the s-antiquark in the K +-mesons cannot annihilate in the K T p-interactions, the structure of
the corresponding cross sections is rather simple, and is very like the structure of pp cross sections. The u-antiquark
in the K ~-mesons can annihilate, and the structure of the cross sections is more complicated. Due to these features,

inelastic reactions are very different even though all of them can be connected with various quark flow diagrams like
that shown in Fig. 25.4
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Fig. 25.7: Total and elastic cross sections of K p-interactions. Points are experimental data from PDG data-base .

The reactions K~ +p — X~ +71 and K~ +p — X% 4+ 70 can be explained by the annihilation of the u-antiquark of
the K~ and the formation of s-channel resonances. The other reactions — K~ +p — Lt +7~and K~ +p — A+70,
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are connected with quark exchange. As seen, the energy dependence of the cross sections of the two types of processes
are different. The K~ + p — n + KO reaction must be caused by annihilation, but the dependence of its cross section
on energy is closer to that of the quark exchange processes. The cross section of the reaction has a resonance structure
only at P, <2 GeV/c. Above that energy there is no structure. Because the cross section of the reaction is sufficiently
small at high energies, one can omit its correct description.
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Fig. 25.8: Reaction cross sections of K p-interactions. Points are experimental data .

K- +p—n+K +7ntand K~ +p— p+ K"+ 7~ reactions are mainly caused by the diffraction dissociation of
a projectile or a target hadron. The energy dependence of their cross sections are different from those of annihilation
and quark exchange.

The same regularities can be seen in K ¥ p reactions. The energy dependence of the cross sections of the K + p —
p+ KO+t Kt +p s p+ Kt +7%and K+ +p — n+ K+ + 7 reactions are quite different from those of
K™ +p.

In summary, there are three types of energy dependence in the reaction cross sections. The rapidly decreasing one is
due to annihilation. The cross sections of the quark exchange processes decrease more<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>