/*- ******************************************************************************* * * cpp macro implementation of left-leaning 2-3 red-black trees. Parent * pointers are not used, and color bits are stored in the least significant * bit of right-child pointers (if RB_COMPACT is defined), thus making node * linkage as compact as is possible for red-black trees. * * Usage: * * #include <stdint.h> * #include <stdbool.h> * #define NDEBUG // (Optional, see assert(3).) * #include <assert.h> * #define RB_COMPACT // (Optional, embed color bits in right-child pointers.) * #include <rb.h> * ... * ******************************************************************************* */ #ifndef RB_H_ #define RB_H_ #ifndef __PGI #define RB_COMPACT #endif #ifdef RB_COMPACT /* Node structure. */ #define rb_node(a_type) \ struct { \ a_type *rbn_left; \ a_type *rbn_right_red; \ } #else #define rb_node(a_type) \ struct { \ a_type *rbn_left; \ a_type *rbn_right; \ bool rbn_red; \ } #endif /* Root structure. */ #define rb_tree(a_type) \ struct { \ a_type *rbt_root; \ } /* Left accessors. */ #define rbtn_left_get(a_type, a_field, a_node) \ ((a_node)->a_field.rbn_left) #define rbtn_left_set(a_type, a_field, a_node, a_left) do { \ (a_node)->a_field.rbn_left = a_left; \ } while (0) #ifdef RB_COMPACT /* Right accessors. */ #define rbtn_right_get(a_type, a_field, a_node) \ ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \ & ((ssize_t)-2))) #define rbtn_right_set(a_type, a_field, a_node, a_right) do { \ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \ | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \ } while (0) /* Color accessors. */ #define rbtn_red_get(a_type, a_field, a_node) \ ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \ & ((size_t)1))) #define rbtn_color_set(a_type, a_field, a_node, a_red) do { \ (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \ | ((ssize_t)a_red)); \ } while (0) #define rbtn_red_set(a_type, a_field, a_node) do { \ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \ (a_node)->a_field.rbn_right_red) | ((size_t)1)); \ } while (0) #define rbtn_black_set(a_type, a_field, a_node) do { \ (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \ } while (0) /* Node initializer. */ #define rbt_node_new(a_type, a_field, a_rbt, a_node) do { \ /* Bookkeeping bit cannot be used by node pointer. */ \ assert(((uintptr_t)(a_node) & 0x1) == 0); \ rbtn_left_set(a_type, a_field, (a_node), NULL); \ rbtn_right_set(a_type, a_field, (a_node), NULL); \ rbtn_red_set(a_type, a_field, (a_node)); \ } while (0) #else /* Right accessors. */ #define rbtn_right_get(a_type, a_field, a_node) \ ((a_node)->a_field.rbn_right) #define rbtn_right_set(a_type, a_field, a_node, a_right) do { \ (a_node)->a_field.rbn_right = a_right; \ } while (0) /* Color accessors. */ #define rbtn_red_get(a_type, a_field, a_node) \ ((a_node)->a_field.rbn_red) #define rbtn_color_set(a_type, a_field, a_node, a_red) do { \ (a_node)->a_field.rbn_red = (a_red); \ } while (0) #define rbtn_red_set(a_type, a_field, a_node) do { \ (a_node)->a_field.rbn_red = true; \ } while (0) #define rbtn_black_set(a_type, a_field, a_node) do { \ (a_node)->a_field.rbn_red = false; \ } while (0) /* Node initializer. */ #define rbt_node_new(a_type, a_field, a_rbt, a_node) do { \ rbtn_left_set(a_type, a_field, (a_node), NULL); \ rbtn_right_set(a_type, a_field, (a_node), NULL); \ rbtn_red_set(a_type, a_field, (a_node)); \ } while (0) #endif /* Tree initializer. */ #define rb_new(a_type, a_field, a_rbt) do { \ (a_rbt)->rbt_root = NULL; \ } while (0) /* Internal utility macros. */ #define rbtn_first(a_type, a_field, a_rbt, a_root, r_node) do { \ (r_node) = (a_root); \ if ((r_node) != NULL) { \ for (; \ rbtn_left_get(a_type, a_field, (r_node)) != NULL; \ (r_node) = rbtn_left_get(a_type, a_field, (r_node))) { \ } \ } \ } while (0) #define rbtn_last(a_type, a_field, a_rbt, a_root, r_node) do { \ (r_node) = (a_root); \ if ((r_node) != NULL) { \ for (; rbtn_right_get(a_type, a_field, (r_node)) != NULL; \ (r_node) = rbtn_right_get(a_type, a_field, (r_node))) { \ } \ } \ } while (0) #define rbtn_rotate_left(a_type, a_field, a_node, r_node) do { \ (r_node) = rbtn_right_get(a_type, a_field, (a_node)); \ rbtn_right_set(a_type, a_field, (a_node), \ rbtn_left_get(a_type, a_field, (r_node))); \ rbtn_left_set(a_type, a_field, (r_node), (a_node)); \ } while (0) #define rbtn_rotate_right(a_type, a_field, a_node, r_node) do { \ (r_node) = rbtn_left_get(a_type, a_field, (a_node)); \ rbtn_left_set(a_type, a_field, (a_node), \ rbtn_right_get(a_type, a_field, (r_node))); \ rbtn_right_set(a_type, a_field, (r_node), (a_node)); \ } while (0) /* * The rb_proto() macro generates function prototypes that correspond to the * functions generated by an equivalently parameterized call to rb_gen(). */ #define rb_proto(a_attr, a_prefix, a_rbt_type, a_type) \ a_attr void \ a_prefix##new(a_rbt_type *rbtree); \ a_attr bool \ a_prefix##empty(a_rbt_type *rbtree); \ a_attr a_type * \ a_prefix##first(a_rbt_type *rbtree); \ a_attr a_type * \ a_prefix##last(a_rbt_type *rbtree); \ a_attr a_type * \ a_prefix##next(a_rbt_type *rbtree, a_type *node); \ a_attr a_type * \ a_prefix##prev(a_rbt_type *rbtree, a_type *node); \ a_attr a_type * \ a_prefix##search(a_rbt_type *rbtree, const a_type *key); \ a_attr a_type * \ a_prefix##nsearch(a_rbt_type *rbtree, const a_type *key); \ a_attr a_type * \ a_prefix##psearch(a_rbt_type *rbtree, const a_type *key); \ a_attr void \ a_prefix##insert(a_rbt_type *rbtree, a_type *node); \ a_attr void \ a_prefix##remove(a_rbt_type *rbtree, a_type *node); \ a_attr a_type * \ a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \ a_rbt_type *, a_type *, void *), void *arg); \ a_attr a_type * \ a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg); \ a_attr void \ a_prefix##destroy(a_rbt_type *rbtree, void (*cb)(a_type *, void *), \ void *arg); /* * The rb_gen() macro generates a type-specific red-black tree implementation, * based on the above cpp macros. * * Arguments: * * a_attr : Function attribute for generated functions (ex: static). * a_prefix : Prefix for generated functions (ex: ex_). * a_rb_type : Type for red-black tree data structure (ex: ex_t). * a_type : Type for red-black tree node data structure (ex: ex_node_t). * a_field : Name of red-black tree node linkage (ex: ex_link). * a_cmp : Node comparison function name, with the following prototype: * int (a_cmp *)(a_type *a_node, a_type *a_other); * ^^^^^^ * or a_key * Interpretation of comparison function return values: * -1 : a_node < a_other * 0 : a_node == a_other * 1 : a_node > a_other * In all cases, the a_node or a_key macro argument is the first * argument to the comparison function, which makes it possible * to write comparison functions that treat the first argument * specially. * * Assuming the following setup: * * typedef struct ex_node_s ex_node_t; * struct ex_node_s { * rb_node(ex_node_t) ex_link; * }; * typedef rb_tree(ex_node_t) ex_t; * rb_gen(static, ex_, ex_t, ex_node_t, ex_link, ex_cmp) * * The following API is generated: * * static void * ex_new(ex_t *tree); * Description: Initialize a red-black tree structure. * Args: * tree: Pointer to an uninitialized red-black tree object. * * static bool * ex_empty(ex_t *tree); * Description: Determine whether tree is empty. * Args: * tree: Pointer to an initialized red-black tree object. * Ret: True if tree is empty, false otherwise. * * static ex_node_t * * ex_first(ex_t *tree); * static ex_node_t * * ex_last(ex_t *tree); * Description: Get the first/last node in tree. * Args: * tree: Pointer to an initialized red-black tree object. * Ret: First/last node in tree, or NULL if tree is empty. * * static ex_node_t * * ex_next(ex_t *tree, ex_node_t *node); * static ex_node_t * * ex_prev(ex_t *tree, ex_node_t *node); * Description: Get node's successor/predecessor. * Args: * tree: Pointer to an initialized red-black tree object. * node: A node in tree. * Ret: node's successor/predecessor in tree, or NULL if node is * last/first. * * static ex_node_t * * ex_search(ex_t *tree, const ex_node_t *key); * Description: Search for node that matches key. * Args: * tree: Pointer to an initialized red-black tree object. * key : Search key. * Ret: Node in tree that matches key, or NULL if no match. * * static ex_node_t * * ex_nsearch(ex_t *tree, const ex_node_t *key); * static ex_node_t * * ex_psearch(ex_t *tree, const ex_node_t *key); * Description: Search for node that matches key. If no match is found, * return what would be key's successor/predecessor, were * key in tree. * Args: * tree: Pointer to an initialized red-black tree object. * key : Search key. * Ret: Node in tree that matches key, or if no match, hypothetical node's * successor/predecessor (NULL if no successor/predecessor). * * static void * ex_insert(ex_t *tree, ex_node_t *node); * Description: Insert node into tree. * Args: * tree: Pointer to an initialized red-black tree object. * node: Node to be inserted into tree. * * static void * ex_remove(ex_t *tree, ex_node_t *node); * Description: Remove node from tree. * Args: * tree: Pointer to an initialized red-black tree object. * node: Node in tree to be removed. * * static ex_node_t * * ex_iter(ex_t *tree, ex_node_t *start, ex_node_t *(*cb)(ex_t *, * ex_node_t *, void *), void *arg); * static ex_node_t * * ex_reverse_iter(ex_t *tree, ex_node_t *start, ex_node *(*cb)(ex_t *, * ex_node_t *, void *), void *arg); * Description: Iterate forward/backward over tree, starting at node. If * tree is modified, iteration must be immediately * terminated by the callback function that causes the * modification. * Args: * tree : Pointer to an initialized red-black tree object. * start: Node at which to start iteration, or NULL to start at * first/last node. * cb : Callback function, which is called for each node during * iteration. Under normal circumstances the callback function * should return NULL, which causes iteration to continue. If a * callback function returns non-NULL, iteration is immediately * terminated and the non-NULL return value is returned by the * iterator. This is useful for re-starting iteration after * modifying tree. * arg : Opaque pointer passed to cb(). * Ret: NULL if iteration completed, or the non-NULL callback return value * that caused termination of the iteration. * * static void * ex_destroy(ex_t *tree, void (*cb)(ex_node_t *, void *), void *arg); * Description: Iterate over the tree with post-order traversal, remove * each node, and run the callback if non-null. This is * used for destroying a tree without paying the cost to * rebalance it. The tree must not be otherwise altered * during traversal. * Args: * tree: Pointer to an initialized red-black tree object. * cb : Callback function, which, if non-null, is called for each node * during iteration. There is no way to stop iteration once it * has begun. * arg : Opaque pointer passed to cb(). */ #define rb_gen(a_attr, a_prefix, a_rbt_type, a_type, a_field, a_cmp) \ a_attr void \ a_prefix##new(a_rbt_type *rbtree) { \ rb_new(a_type, a_field, rbtree); \ } \ a_attr bool \ a_prefix##empty(a_rbt_type *rbtree) { \ return (rbtree->rbt_root == NULL); \ } \ a_attr a_type * \ a_prefix##first(a_rbt_type *rbtree) { \ a_type *ret; \ rbtn_first(a_type, a_field, rbtree, rbtree->rbt_root, ret); \ return ret; \ } \ a_attr a_type * \ a_prefix##last(a_rbt_type *rbtree) { \ a_type *ret; \ rbtn_last(a_type, a_field, rbtree, rbtree->rbt_root, ret); \ return ret; \ } \ a_attr a_type * \ a_prefix##next(a_rbt_type *rbtree, a_type *node) { \ a_type *ret; \ if (rbtn_right_get(a_type, a_field, node) != NULL) { \ rbtn_first(a_type, a_field, rbtree, rbtn_right_get(a_type, \ a_field, node), ret); \ } else { \ a_type *tnode = rbtree->rbt_root; \ assert(tnode != NULL); \ ret = NULL; \ while (true) { \ int cmp = (a_cmp)(node, tnode); \ if (cmp < 0) { \ ret = tnode; \ tnode = rbtn_left_get(a_type, a_field, tnode); \ } else if (cmp > 0) { \ tnode = rbtn_right_get(a_type, a_field, tnode); \ } else { \ break; \ } \ assert(tnode != NULL); \ } \ } \ return ret; \ } \ a_attr a_type * \ a_prefix##prev(a_rbt_type *rbtree, a_type *node) { \ a_type *ret; \ if (rbtn_left_get(a_type, a_field, node) != NULL) { \ rbtn_last(a_type, a_field, rbtree, rbtn_left_get(a_type, \ a_field, node), ret); \ } else { \ a_type *tnode = rbtree->rbt_root; \ assert(tnode != NULL); \ ret = NULL; \ while (true) { \ int cmp = (a_cmp)(node, tnode); \ if (cmp < 0) { \ tnode = rbtn_left_get(a_type, a_field, tnode); \ } else if (cmp > 0) { \ ret = tnode; \ tnode = rbtn_right_get(a_type, a_field, tnode); \ } else { \ break; \ } \ assert(tnode != NULL); \ } \ } \ return ret; \ } \ a_attr a_type * \ a_prefix##search(a_rbt_type *rbtree, const a_type *key) { \ a_type *ret; \ int cmp; \ ret = rbtree->rbt_root; \ while (ret != NULL \ && (cmp = (a_cmp)(key, ret)) != 0) { \ if (cmp < 0) { \ ret = rbtn_left_get(a_type, a_field, ret); \ } else { \ ret = rbtn_right_get(a_type, a_field, ret); \ } \ } \ return ret; \ } \ a_attr a_type * \ a_prefix##nsearch(a_rbt_type *rbtree, const a_type *key) { \ a_type *ret; \ a_type *tnode = rbtree->rbt_root; \ ret = NULL; \ while (tnode != NULL) { \ int cmp = (a_cmp)(key, tnode); \ if (cmp < 0) { \ ret = tnode; \ tnode = rbtn_left_get(a_type, a_field, tnode); \ } else if (cmp > 0) { \ tnode = rbtn_right_get(a_type, a_field, tnode); \ } else { \ ret = tnode; \ break; \ } \ } \ return ret; \ } \ a_attr a_type * \ a_prefix##psearch(a_rbt_type *rbtree, const a_type *key) { \ a_type *ret; \ a_type *tnode = rbtree->rbt_root; \ ret = NULL; \ while (tnode != NULL) { \ int cmp = (a_cmp)(key, tnode); \ if (cmp < 0) { \ tnode = rbtn_left_get(a_type, a_field, tnode); \ } else if (cmp > 0) { \ ret = tnode; \ tnode = rbtn_right_get(a_type, a_field, tnode); \ } else { \ ret = tnode; \ break; \ } \ } \ return ret; \ } \ a_attr void \ a_prefix##insert(a_rbt_type *rbtree, a_type *node) { \ struct { \ a_type *node; \ int cmp; \ } path[sizeof(void *) << 4], *pathp; \ rbt_node_new(a_type, a_field, rbtree, node); \ /* Wind. */ \ path->node = rbtree->rbt_root; \ for (pathp = path; pathp->node != NULL; pathp++) { \ int cmp = pathp->cmp = a_cmp(node, pathp->node); \ assert(cmp != 0); \ if (cmp < 0) { \ pathp[1].node = rbtn_left_get(a_type, a_field, \ pathp->node); \ } else { \ pathp[1].node = rbtn_right_get(a_type, a_field, \ pathp->node); \ } \ } \ pathp->node = node; \ /* Unwind. */ \ for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \ a_type *cnode = pathp->node; \ if (pathp->cmp < 0) { \ a_type *left = pathp[1].node; \ rbtn_left_set(a_type, a_field, cnode, left); \ if (rbtn_red_get(a_type, a_field, left)) { \ a_type *leftleft = rbtn_left_get(a_type, a_field, left);\ if (leftleft != NULL && rbtn_red_get(a_type, a_field, \ leftleft)) { \ /* Fix up 4-node. */ \ a_type *tnode; \ rbtn_black_set(a_type, a_field, leftleft); \ rbtn_rotate_right(a_type, a_field, cnode, tnode); \ cnode = tnode; \ } \ } else { \ return; \ } \ } else { \ a_type *right = pathp[1].node; \ rbtn_right_set(a_type, a_field, cnode, right); \ if (rbtn_red_get(a_type, a_field, right)) { \ a_type *left = rbtn_left_get(a_type, a_field, cnode); \ if (left != NULL && rbtn_red_get(a_type, a_field, \ left)) { \ /* Split 4-node. */ \ rbtn_black_set(a_type, a_field, left); \ rbtn_black_set(a_type, a_field, right); \ rbtn_red_set(a_type, a_field, cnode); \ } else { \ /* Lean left. */ \ a_type *tnode; \ bool tred = rbtn_red_get(a_type, a_field, cnode); \ rbtn_rotate_left(a_type, a_field, cnode, tnode); \ rbtn_color_set(a_type, a_field, tnode, tred); \ rbtn_red_set(a_type, a_field, cnode); \ cnode = tnode; \ } \ } else { \ return; \ } \ } \ pathp->node = cnode; \ } \ /* Set root, and make it black. */ \ rbtree->rbt_root = path->node; \ rbtn_black_set(a_type, a_field, rbtree->rbt_root); \ } \ a_attr void \ a_prefix##remove(a_rbt_type *rbtree, a_type *node) { \ struct { \ a_type *node; \ int cmp; \ } *pathp, *nodep, path[sizeof(void *) << 4]; \ /* Wind. */ \ nodep = NULL; /* Silence compiler warning. */ \ path->node = rbtree->rbt_root; \ for (pathp = path; pathp->node != NULL; pathp++) { \ int cmp = pathp->cmp = a_cmp(node, pathp->node); \ if (cmp < 0) { \ pathp[1].node = rbtn_left_get(a_type, a_field, \ pathp->node); \ } else { \ pathp[1].node = rbtn_right_get(a_type, a_field, \ pathp->node); \ if (cmp == 0) { \ /* Find node's successor, in preparation for swap. */ \ pathp->cmp = 1; \ nodep = pathp; \ for (pathp++; pathp->node != NULL; pathp++) { \ pathp->cmp = -1; \ pathp[1].node = rbtn_left_get(a_type, a_field, \ pathp->node); \ } \ break; \ } \ } \ } \ assert(nodep->node == node); \ pathp--; \ if (pathp->node != node) { \ /* Swap node with its successor. */ \ bool tred = rbtn_red_get(a_type, a_field, pathp->node); \ rbtn_color_set(a_type, a_field, pathp->node, \ rbtn_red_get(a_type, a_field, node)); \ rbtn_left_set(a_type, a_field, pathp->node, \ rbtn_left_get(a_type, a_field, node)); \ /* If node's successor is its right child, the following code */\ /* will do the wrong thing for the right child pointer. */\ /* However, it doesn't matter, because the pointer will be */\ /* properly set when the successor is pruned. */\ rbtn_right_set(a_type, a_field, pathp->node, \ rbtn_right_get(a_type, a_field, node)); \ rbtn_color_set(a_type, a_field, node, tred); \ /* The pruned leaf node's child pointers are never accessed */\ /* again, so don't bother setting them to nil. */\ nodep->node = pathp->node; \ pathp->node = node; \ if (nodep == path) { \ rbtree->rbt_root = nodep->node; \ } else { \ if (nodep[-1].cmp < 0) { \ rbtn_left_set(a_type, a_field, nodep[-1].node, \ nodep->node); \ } else { \ rbtn_right_set(a_type, a_field, nodep[-1].node, \ nodep->node); \ } \ } \ } else { \ a_type *left = rbtn_left_get(a_type, a_field, node); \ if (left != NULL) { \ /* node has no successor, but it has a left child. */\ /* Splice node out, without losing the left child. */\ assert(!rbtn_red_get(a_type, a_field, node)); \ assert(rbtn_red_get(a_type, a_field, left)); \ rbtn_black_set(a_type, a_field, left); \ if (pathp == path) { \ rbtree->rbt_root = left; \ } else { \ if (pathp[-1].cmp < 0) { \ rbtn_left_set(a_type, a_field, pathp[-1].node, \ left); \ } else { \ rbtn_right_set(a_type, a_field, pathp[-1].node, \ left); \ } \ } \ return; \ } else if (pathp == path) { \ /* The tree only contained one node. */ \ rbtree->rbt_root = NULL; \ return; \ } \ } \ if (rbtn_red_get(a_type, a_field, pathp->node)) { \ /* Prune red node, which requires no fixup. */ \ assert(pathp[-1].cmp < 0); \ rbtn_left_set(a_type, a_field, pathp[-1].node, NULL); \ return; \ } \ /* The node to be pruned is black, so unwind until balance is */\ /* restored. */\ pathp->node = NULL; \ for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \ assert(pathp->cmp != 0); \ if (pathp->cmp < 0) { \ rbtn_left_set(a_type, a_field, pathp->node, \ pathp[1].node); \ if (rbtn_red_get(a_type, a_field, pathp->node)) { \ a_type *right = rbtn_right_get(a_type, a_field, \ pathp->node); \ a_type *rightleft = rbtn_left_get(a_type, a_field, \ right); \ a_type *tnode; \ if (rightleft != NULL && rbtn_red_get(a_type, a_field, \ rightleft)) { \ /* In the following diagrams, ||, //, and \\ */\ /* indicate the path to the removed node. */\ /* */\ /* || */\ /* pathp(r) */\ /* // \ */\ /* (b) (b) */\ /* / */\ /* (r) */\ /* */\ rbtn_black_set(a_type, a_field, pathp->node); \ rbtn_rotate_right(a_type, a_field, right, tnode); \ rbtn_right_set(a_type, a_field, pathp->node, tnode);\ rbtn_rotate_left(a_type, a_field, pathp->node, \ tnode); \ } else { \ /* || */\ /* pathp(r) */\ /* // \ */\ /* (b) (b) */\ /* / */\ /* (b) */\ /* */\ rbtn_rotate_left(a_type, a_field, pathp->node, \ tnode); \ } \ /* Balance restored, but rotation modified subtree */\ /* root. */\ assert((uintptr_t)pathp > (uintptr_t)path); \ if (pathp[-1].cmp < 0) { \ rbtn_left_set(a_type, a_field, pathp[-1].node, \ tnode); \ } else { \ rbtn_right_set(a_type, a_field, pathp[-1].node, \ tnode); \ } \ return; \ } else { \ a_type *right = rbtn_right_get(a_type, a_field, \ pathp->node); \ a_type *rightleft = rbtn_left_get(a_type, a_field, \ right); \ if (rightleft != NULL && rbtn_red_get(a_type, a_field, \ rightleft)) { \ /* || */\ /* pathp(b) */\ /* // \ */\ /* (b) (b) */\ /* / */\ /* (r) */\ a_type *tnode; \ rbtn_black_set(a_type, a_field, rightleft); \ rbtn_rotate_right(a_type, a_field, right, tnode); \ rbtn_right_set(a_type, a_field, pathp->node, tnode);\ rbtn_rotate_left(a_type, a_field, pathp->node, \ tnode); \ /* Balance restored, but rotation modified */\ /* subtree root, which may actually be the tree */\ /* root. */\ if (pathp == path) { \ /* Set root. */ \ rbtree->rbt_root = tnode; \ } else { \ if (pathp[-1].cmp < 0) { \ rbtn_left_set(a_type, a_field, \ pathp[-1].node, tnode); \ } else { \ rbtn_right_set(a_type, a_field, \ pathp[-1].node, tnode); \ } \ } \ return; \ } else { \ /* || */\ /* pathp(b) */\ /* // \ */\ /* (b) (b) */\ /* / */\ /* (b) */\ a_type *tnode; \ rbtn_red_set(a_type, a_field, pathp->node); \ rbtn_rotate_left(a_type, a_field, pathp->node, \ tnode); \ pathp->node = tnode; \ } \ } \ } else { \ a_type *left; \ rbtn_right_set(a_type, a_field, pathp->node, \ pathp[1].node); \ left = rbtn_left_get(a_type, a_field, pathp->node); \ if (rbtn_red_get(a_type, a_field, left)) { \ a_type *tnode; \ a_type *leftright = rbtn_right_get(a_type, a_field, \ left); \ a_type *leftrightleft = rbtn_left_get(a_type, a_field, \ leftright); \ if (leftrightleft != NULL && rbtn_red_get(a_type, \ a_field, leftrightleft)) { \ /* || */\ /* pathp(b) */\ /* / \\ */\ /* (r) (b) */\ /* \ */\ /* (b) */\ /* / */\ /* (r) */\ a_type *unode; \ rbtn_black_set(a_type, a_field, leftrightleft); \ rbtn_rotate_right(a_type, a_field, pathp->node, \ unode); \ rbtn_rotate_right(a_type, a_field, pathp->node, \ tnode); \ rbtn_right_set(a_type, a_field, unode, tnode); \ rbtn_rotate_left(a_type, a_field, unode, tnode); \ } else { \ /* || */\ /* pathp(b) */\ /* / \\ */\ /* (r) (b) */\ /* \ */\ /* (b) */\ /* / */\ /* (b) */\ assert(leftright != NULL); \ rbtn_red_set(a_type, a_field, leftright); \ rbtn_rotate_right(a_type, a_field, pathp->node, \ tnode); \ rbtn_black_set(a_type, a_field, tnode); \ } \ /* Balance restored, but rotation modified subtree */\ /* root, which may actually be the tree root. */\ if (pathp == path) { \ /* Set root. */ \ rbtree->rbt_root = tnode; \ } else { \ if (pathp[-1].cmp < 0) { \ rbtn_left_set(a_type, a_field, pathp[-1].node, \ tnode); \ } else { \ rbtn_right_set(a_type, a_field, pathp[-1].node, \ tnode); \ } \ } \ return; \ } else if (rbtn_red_get(a_type, a_field, pathp->node)) { \ a_type *leftleft = rbtn_left_get(a_type, a_field, left);\ if (leftleft != NULL && rbtn_red_get(a_type, a_field, \ leftleft)) { \ /* || */\ /* pathp(r) */\ /* / \\ */\ /* (b) (b) */\ /* / */\ /* (r) */\ a_type *tnode; \ rbtn_black_set(a_type, a_field, pathp->node); \ rbtn_red_set(a_type, a_field, left); \ rbtn_black_set(a_type, a_field, leftleft); \ rbtn_rotate_right(a_type, a_field, pathp->node, \ tnode); \ /* Balance restored, but rotation modified */\ /* subtree root. */\ assert((uintptr_t)pathp > (uintptr_t)path); \ if (pathp[-1].cmp < 0) { \ rbtn_left_set(a_type, a_field, pathp[-1].node, \ tnode); \ } else { \ rbtn_right_set(a_type, a_field, pathp[-1].node, \ tnode); \ } \ return; \ } else { \ /* || */\ /* pathp(r) */\ /* / \\ */\ /* (b) (b) */\ /* / */\ /* (b) */\ rbtn_red_set(a_type, a_field, left); \ rbtn_black_set(a_type, a_field, pathp->node); \ /* Balance restored. */ \ return; \ } \ } else { \ a_type *leftleft = rbtn_left_get(a_type, a_field, left);\ if (leftleft != NULL && rbtn_red_get(a_type, a_field, \ leftleft)) { \ /* || */\ /* pathp(b) */\ /* / \\ */\ /* (b) (b) */\ /* / */\ /* (r) */\ a_type *tnode; \ rbtn_black_set(a_type, a_field, leftleft); \ rbtn_rotate_right(a_type, a_field, pathp->node, \ tnode); \ /* Balance restored, but rotation modified */\ /* subtree root, which may actually be the tree */\ /* root. */\ if (pathp == path) { \ /* Set root. */ \ rbtree->rbt_root = tnode; \ } else { \ if (pathp[-1].cmp < 0) { \ rbtn_left_set(a_type, a_field, \ pathp[-1].node, tnode); \ } else { \ rbtn_right_set(a_type, a_field, \ pathp[-1].node, tnode); \ } \ } \ return; \ } else { \ /* || */\ /* pathp(b) */\ /* / \\ */\ /* (b) (b) */\ /* / */\ /* (b) */\ rbtn_red_set(a_type, a_field, left); \ } \ } \ } \ } \ /* Set root. */ \ rbtree->rbt_root = path->node; \ assert(!rbtn_red_get(a_type, a_field, rbtree->rbt_root)); \ } \ a_attr a_type * \ a_prefix##iter_recurse(a_rbt_type *rbtree, a_type *node, \ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \ if (node == NULL) { \ return NULL; \ } else { \ a_type *ret; \ if ((ret = a_prefix##iter_recurse(rbtree, rbtn_left_get(a_type, \ a_field, node), cb, arg)) != NULL || (ret = cb(rbtree, node, \ arg)) != NULL) { \ return ret; \ } \ return a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \ a_field, node), cb, arg); \ } \ } \ a_attr a_type * \ a_prefix##iter_start(a_rbt_type *rbtree, a_type *start, a_type *node, \ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \ int cmp = a_cmp(start, node); \ if (cmp < 0) { \ a_type *ret; \ if ((ret = a_prefix##iter_start(rbtree, start, \ rbtn_left_get(a_type, a_field, node), cb, arg)) != NULL || \ (ret = cb(rbtree, node, arg)) != NULL) { \ return ret; \ } \ return a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \ a_field, node), cb, arg); \ } else if (cmp > 0) { \ return a_prefix##iter_start(rbtree, start, \ rbtn_right_get(a_type, a_field, node), cb, arg); \ } else { \ a_type *ret; \ if ((ret = cb(rbtree, node, arg)) != NULL) { \ return ret; \ } \ return a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \ a_field, node), cb, arg); \ } \ } \ a_attr a_type * \ a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \ a_rbt_type *, a_type *, void *), void *arg) { \ a_type *ret; \ if (start != NULL) { \ ret = a_prefix##iter_start(rbtree, start, rbtree->rbt_root, \ cb, arg); \ } else { \ ret = a_prefix##iter_recurse(rbtree, rbtree->rbt_root, cb, arg);\ } \ return ret; \ } \ a_attr a_type * \ a_prefix##reverse_iter_recurse(a_rbt_type *rbtree, a_type *node, \ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \ if (node == NULL) { \ return NULL; \ } else { \ a_type *ret; \ if ((ret = a_prefix##reverse_iter_recurse(rbtree, \ rbtn_right_get(a_type, a_field, node), cb, arg)) != NULL || \ (ret = cb(rbtree, node, arg)) != NULL) { \ return ret; \ } \ return a_prefix##reverse_iter_recurse(rbtree, \ rbtn_left_get(a_type, a_field, node), cb, arg); \ } \ } \ a_attr a_type * \ a_prefix##reverse_iter_start(a_rbt_type *rbtree, a_type *start, \ a_type *node, a_type *(*cb)(a_rbt_type *, a_type *, void *), \ void *arg) { \ int cmp = a_cmp(start, node); \ if (cmp > 0) { \ a_type *ret; \ if ((ret = a_prefix##reverse_iter_start(rbtree, start, \ rbtn_right_get(a_type, a_field, node), cb, arg)) != NULL || \ (ret = cb(rbtree, node, arg)) != NULL) { \ return ret; \ } \ return a_prefix##reverse_iter_recurse(rbtree, \ rbtn_left_get(a_type, a_field, node), cb, arg); \ } else if (cmp < 0) { \ return a_prefix##reverse_iter_start(rbtree, start, \ rbtn_left_get(a_type, a_field, node), cb, arg); \ } else { \ a_type *ret; \ if ((ret = cb(rbtree, node, arg)) != NULL) { \ return ret; \ } \ return a_prefix##reverse_iter_recurse(rbtree, \ rbtn_left_get(a_type, a_field, node), cb, arg); \ } \ } \ a_attr a_type * \ a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \ a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \ a_type *ret; \ if (start != NULL) { \ ret = a_prefix##reverse_iter_start(rbtree, start, \ rbtree->rbt_root, cb, arg); \ } else { \ ret = a_prefix##reverse_iter_recurse(rbtree, rbtree->rbt_root, \ cb, arg); \ } \ return ret; \ } \ a_attr void \ a_prefix##destroy_recurse(a_rbt_type *rbtree, a_type *node, void (*cb)( \ a_type *, void *), void *arg) { \ if (node == NULL) { \ return; \ } \ a_prefix##destroy_recurse(rbtree, rbtn_left_get(a_type, a_field, \ node), cb, arg); \ rbtn_left_set(a_type, a_field, (node), NULL); \ a_prefix##destroy_recurse(rbtree, rbtn_right_get(a_type, a_field, \ node), cb, arg); \ rbtn_right_set(a_type, a_field, (node), NULL); \ if (cb) { \ cb(node, arg); \ } \ } \ a_attr void \ a_prefix##destroy(a_rbt_type *rbtree, void (*cb)(a_type *, void *), \ void *arg) { \ a_prefix##destroy_recurse(rbtree, rbtree->rbt_root, cb, arg); \ rbtree->rbt_root = NULL; \ } #endif /* RB_H_ */