/* $NetBSD: event.c,v 1.6 2023/08/03 08:03:19 mrg Exp $ */ /* * Copyright (c) 2000-2007 Niels Provos <provos@citi.umich.edu> * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "event2/event-config.h" #include <sys/cdefs.h> __RCSID("$NetBSD: event.c,v 1.6 2023/08/03 08:03:19 mrg Exp $"); #include "evconfig-private.h" #ifdef _WIN32 #include <winsock2.h> #define WIN32_LEAN_AND_MEAN #include <windows.h> #undef WIN32_LEAN_AND_MEAN #endif #include <sys/types.h> #if !defined(_WIN32) && defined(EVENT__HAVE_SYS_TIME_H) #include <sys/time.h> #endif #include <sys/queue.h> #ifdef EVENT__HAVE_SYS_SOCKET_H #include <sys/socket.h> #endif #include <stdio.h> #include <stdlib.h> #ifdef EVENT__HAVE_UNISTD_H #include <unistd.h> #endif #include <ctype.h> #include <errno.h> #include <signal.h> #include <string.h> #include <time.h> #include <limits.h> #ifdef EVENT__HAVE_FCNTL_H #include <fcntl.h> #endif #include "event2/event.h" #include "event2/event_struct.h" #include "event2/event_compat.h" #include "event-internal.h" #include "defer-internal.h" #include "evthread-internal.h" #include "event2/thread.h" #include "event2/util.h" #include "log-internal.h" #include "evmap-internal.h" #include "iocp-internal.h" #include "changelist-internal.h" #define HT_NO_CACHE_HASH_VALUES #include "ht-internal.h" #include "util-internal.h" #ifdef EVENT__HAVE_WORKING_KQUEUE #include "kqueue-internal.h" #endif #ifdef EVENT__HAVE_EVENT_PORTS extern const struct eventop evportops; #endif #ifdef EVENT__HAVE_SELECT extern const struct eventop selectops; #endif #ifdef EVENT__HAVE_POLL extern const struct eventop pollops; #endif #ifdef EVENT__HAVE_EPOLL extern const struct eventop epollops; #endif #ifdef EVENT__HAVE_WORKING_KQUEUE extern const struct eventop kqops; #endif #ifdef EVENT__HAVE_DEVPOLL extern const struct eventop devpollops; #endif #ifdef _WIN32 extern const struct eventop win32ops; #endif /* Array of backends in order of preference. */ static const struct eventop *eventops[] = { #ifdef EVENT__HAVE_EVENT_PORTS &evportops, #endif #ifdef EVENT__HAVE_WORKING_KQUEUE &kqops, #endif #ifdef EVENT__HAVE_EPOLL &epollops, #endif #ifdef EVENT__HAVE_DEVPOLL &devpollops, #endif #ifdef EVENT__HAVE_POLL &pollops, #endif #ifdef EVENT__HAVE_SELECT &selectops, #endif #ifdef _WIN32 &win32ops, #endif NULL }; /* Global state; deprecated */ EVENT2_EXPORT_SYMBOL struct event_base *event_global_current_base_ = NULL; #define current_base event_global_current_base_ /* Global state */ static void *event_self_cbarg_ptr_ = NULL; /* Prototypes */ static void event_queue_insert_active(struct event_base *, struct event_callback *); static void event_queue_insert_active_later(struct event_base *, struct event_callback *); static void event_queue_insert_timeout(struct event_base *, struct event *); static void event_queue_insert_inserted(struct event_base *, struct event *); static void event_queue_remove_active(struct event_base *, struct event_callback *); static void event_queue_remove_active_later(struct event_base *, struct event_callback *); static void event_queue_remove_timeout(struct event_base *, struct event *); static void event_queue_remove_inserted(struct event_base *, struct event *); static void event_queue_make_later_events_active(struct event_base *base); static int evthread_make_base_notifiable_nolock_(struct event_base *base); static int event_del_(struct event *ev, int blocking); #ifdef USE_REINSERT_TIMEOUT /* This code seems buggy; only turn it on if we find out what the trouble is. */ static void event_queue_reinsert_timeout(struct event_base *,struct event *, int was_common, int is_common, int old_timeout_idx); #endif static int event_haveevents(struct event_base *); static int event_process_active(struct event_base *); static int timeout_next(struct event_base *, struct timeval **); static void timeout_process(struct event_base *); static inline void event_signal_closure(struct event_base *, struct event *ev); static inline void event_persist_closure(struct event_base *, struct event *ev); static int evthread_notify_base(struct event_base *base); static void insert_common_timeout_inorder(struct common_timeout_list *ctl, struct event *ev); #ifndef EVENT__DISABLE_DEBUG_MODE /* These functions implement a hashtable of which 'struct event *' structures * have been setup or added. We don't want to trust the content of the struct * event itself, since we're trying to work through cases where an event gets * clobbered or freed. Instead, we keep a hashtable indexed by the pointer. */ struct event_debug_entry { HT_ENTRY(event_debug_entry) node; const struct event *ptr; unsigned added : 1; }; static inline unsigned hash_debug_entry(const struct event_debug_entry *e) { /* We need to do this silliness to convince compilers that we * honestly mean to cast e->ptr to an integer, and discard any * part of it that doesn't fit in an unsigned. */ unsigned u = (unsigned) ((ev_uintptr_t) e->ptr); /* Our hashtable implementation is pretty sensitive to low bits, * and every struct event is over 64 bytes in size, so we can * just say >>6. */ return (u >> 6); } static inline int eq_debug_entry(const struct event_debug_entry *a, const struct event_debug_entry *b) { return a->ptr == b->ptr; } int event_debug_mode_on_ = 0; #if !defined(EVENT__DISABLE_THREAD_SUPPORT) && !defined(EVENT__DISABLE_DEBUG_MODE) /** * @brief debug mode variable which is set for any function/structure that needs * to be shared across threads (if thread support is enabled). * * When and if evthreads are initialized, this variable will be evaluated, * and if set to something other than zero, this means the evthread setup * functions were called out of order. * * See: "Locks and threading" in the documentation. */ int event_debug_created_threadable_ctx_ = 0; #endif /* Set if it's too late to enable event_debug_mode. */ static int event_debug_mode_too_late = 0; #ifndef EVENT__DISABLE_THREAD_SUPPORT static void *event_debug_map_lock_ = NULL; #endif static HT_HEAD(event_debug_map, event_debug_entry) global_debug_map = HT_INITIALIZER(); HT_PROTOTYPE(event_debug_map, event_debug_entry, node, hash_debug_entry, eq_debug_entry) HT_GENERATE(event_debug_map, event_debug_entry, node, hash_debug_entry, eq_debug_entry, 0.5, mm_malloc, mm_realloc, mm_free) /* record that ev is now setup (that is, ready for an add) */ static void event_debug_note_setup_(const struct event *ev) { struct event_debug_entry *dent, find; if (!event_debug_mode_on_) goto out; find.ptr = ev; EVLOCK_LOCK(event_debug_map_lock_, 0); dent = HT_FIND(event_debug_map, &global_debug_map, &find); if (dent) { dent->added = 0; } else { dent = mm_malloc(sizeof(*dent)); if (!dent) event_err(1, "Out of memory in debugging code"); dent->ptr = ev; dent->added = 0; HT_INSERT(event_debug_map, &global_debug_map, dent); } EVLOCK_UNLOCK(event_debug_map_lock_, 0); out: event_debug_mode_too_late = 1; } /* record that ev is no longer setup */ static void event_debug_note_teardown_(const struct event *ev) { struct event_debug_entry *dent, find; if (!event_debug_mode_on_) goto out; find.ptr = ev; EVLOCK_LOCK(event_debug_map_lock_, 0); dent = HT_REMOVE(event_debug_map, &global_debug_map, &find); if (dent) mm_free(dent); EVLOCK_UNLOCK(event_debug_map_lock_, 0); out: event_debug_mode_too_late = 1; } /* Macro: record that ev is now added */ static void event_debug_note_add_(const struct event *ev) { struct event_debug_entry *dent,find; if (!event_debug_mode_on_) goto out; find.ptr = ev; EVLOCK_LOCK(event_debug_map_lock_, 0); dent = HT_FIND(event_debug_map, &global_debug_map, &find); if (dent) { dent->added = 1; } else { event_errx(EVENT_ERR_ABORT_, "%s: noting an add on a non-setup event %p" " (events: 0x%x, fd: "EV_SOCK_FMT ", flags: 0x%x)", __func__, ev, ev->ev_events, EV_SOCK_ARG(ev->ev_fd), ev->ev_flags); } EVLOCK_UNLOCK(event_debug_map_lock_, 0); out: event_debug_mode_too_late = 1; } /* record that ev is no longer added */ static void event_debug_note_del_(const struct event *ev) { struct event_debug_entry *dent, find; if (!event_debug_mode_on_) goto out; find.ptr = ev; EVLOCK_LOCK(event_debug_map_lock_, 0); dent = HT_FIND(event_debug_map, &global_debug_map, &find); if (dent) { dent->added = 0; } else { event_errx(EVENT_ERR_ABORT_, "%s: noting a del on a non-setup event %p" " (events: 0x%x, fd: "EV_SOCK_FMT ", flags: 0x%x)", __func__, ev, ev->ev_events, EV_SOCK_ARG(ev->ev_fd), ev->ev_flags); } EVLOCK_UNLOCK(event_debug_map_lock_, 0); out: event_debug_mode_too_late = 1; } /* assert that ev is setup (i.e., okay to add or inspect) */ static void event_debug_assert_is_setup_(const struct event *ev) { struct event_debug_entry *dent, find; if (!event_debug_mode_on_) return; find.ptr = ev; EVLOCK_LOCK(event_debug_map_lock_, 0); dent = HT_FIND(event_debug_map, &global_debug_map, &find); if (!dent) { event_errx(EVENT_ERR_ABORT_, "%s called on a non-initialized event %p" " (events: 0x%x, fd: "EV_SOCK_FMT ", flags: 0x%x)", __func__, ev, ev->ev_events, EV_SOCK_ARG(ev->ev_fd), ev->ev_flags); } EVLOCK_UNLOCK(event_debug_map_lock_, 0); } /* assert that ev is not added (i.e., okay to tear down or set up again) */ static void event_debug_assert_not_added_(const struct event *ev) { struct event_debug_entry *dent, find; if (!event_debug_mode_on_) return; find.ptr = ev; EVLOCK_LOCK(event_debug_map_lock_, 0); dent = HT_FIND(event_debug_map, &global_debug_map, &find); if (dent && dent->added) { event_errx(EVENT_ERR_ABORT_, "%s called on an already added event %p" " (events: 0x%x, fd: "EV_SOCK_FMT", " "flags: 0x%x)", __func__, ev, ev->ev_events, EV_SOCK_ARG(ev->ev_fd), ev->ev_flags); } EVLOCK_UNLOCK(event_debug_map_lock_, 0); } static void event_debug_assert_socket_nonblocking_(evutil_socket_t fd) { if (!event_debug_mode_on_) return; if (fd < 0) return; #ifndef _WIN32 { int flags; if ((flags = fcntl(fd, F_GETFL, NULL)) >= 0) { EVUTIL_ASSERT(flags & O_NONBLOCK); } } #endif } #else static void event_debug_note_setup_(const struct event *ev) { (void)ev; } static void event_debug_note_teardown_(const struct event *ev) { (void)ev; } static void event_debug_note_add_(const struct event *ev) { (void)ev; } static void event_debug_note_del_(const struct event *ev) { (void)ev; } static void event_debug_assert_is_setup_(const struct event *ev) { (void)ev; } static void event_debug_assert_not_added_(const struct event *ev) { (void)ev; } static void event_debug_assert_socket_nonblocking_(evutil_socket_t fd) { (void)fd; } #endif #define EVENT_BASE_ASSERT_LOCKED(base) \ EVLOCK_ASSERT_LOCKED((base)->th_base_lock) /* How often (in seconds) do we check for changes in wall clock time relative * to monotonic time? Set this to -1 for 'never.' */ #define CLOCK_SYNC_INTERVAL 5 /** Set 'tp' to the current time according to 'base'. We must hold the lock * on 'base'. If there is a cached time, return it. Otherwise, use * clock_gettime or gettimeofday as appropriate to find out the right time. * Return 0 on success, -1 on failure. */ static int gettime(struct event_base *base, struct timeval *tp) { EVENT_BASE_ASSERT_LOCKED(base); if (base->tv_cache.tv_sec) { *tp = base->tv_cache; return (0); } if (evutil_gettime_monotonic_(&base->monotonic_timer, tp) == -1) { return -1; } if (base->last_updated_clock_diff + CLOCK_SYNC_INTERVAL < tp->tv_sec) { struct timeval tv; evutil_gettimeofday(&tv,NULL); evutil_timersub(&tv, tp, &base->tv_clock_diff); base->last_updated_clock_diff = tp->tv_sec; } return 0; } int event_base_gettimeofday_cached(struct event_base *base, struct timeval *tv) { int r; if (!base) { base = current_base; if (!current_base) return evutil_gettimeofday(tv, NULL); } EVBASE_ACQUIRE_LOCK(base, th_base_lock); if (base->tv_cache.tv_sec == 0) { r = evutil_gettimeofday(tv, NULL); } else { evutil_timeradd(&base->tv_cache, &base->tv_clock_diff, tv); r = 0; } EVBASE_RELEASE_LOCK(base, th_base_lock); return r; } /** Make 'base' have no current cached time. */ static inline void clear_time_cache(struct event_base *base) { base->tv_cache.tv_sec = 0; } /** Replace the cached time in 'base' with the current time. */ static inline void update_time_cache(struct event_base *base) { base->tv_cache.tv_sec = 0; if (!(base->flags & EVENT_BASE_FLAG_NO_CACHE_TIME)) gettime(base, &base->tv_cache); } int event_base_update_cache_time(struct event_base *base) { if (!base) { base = current_base; if (!current_base) return -1; } EVBASE_ACQUIRE_LOCK(base, th_base_lock); if (base->running_loop) update_time_cache(base); EVBASE_RELEASE_LOCK(base, th_base_lock); return 0; } static inline struct event * event_callback_to_event(struct event_callback *evcb) { EVUTIL_ASSERT((evcb->evcb_flags & EVLIST_INIT)); return EVUTIL_UPCAST(evcb, struct event, ev_evcallback); } static inline struct event_callback * event_to_event_callback(struct event *ev) { return &ev->ev_evcallback; } struct event_base * event_init(void) { struct event_base *base = event_base_new_with_config(NULL); if (base == NULL) { event_errx(1, "%s: Unable to construct event_base", __func__); return NULL; } current_base = base; return (base); } struct event_base * event_base_new(void) { struct event_base *base = NULL; struct event_config *cfg = event_config_new(); if (cfg) { base = event_base_new_with_config(cfg); event_config_free(cfg); } return base; } /** Return true iff 'method' is the name of a method that 'cfg' tells us to * avoid. */ static int event_config_is_avoided_method(const struct event_config *cfg, const char *method) { struct event_config_entry *entry; TAILQ_FOREACH(entry, &cfg->entries, next) { if (entry->avoid_method != NULL && strcmp(entry->avoid_method, method) == 0) return (1); } return (0); } /** Return true iff 'method' is disabled according to the environment. */ static int event_is_method_disabled(const char *name) { char environment[64]; int i; evutil_snprintf(environment, sizeof(environment), "EVENT_NO%s", name); for (i = 8; environment[i] != '\0'; ++i) environment[i] = EVUTIL_TOUPPER_(environment[i]); /* Note that evutil_getenv_() ignores the environment entirely if * we're setuid */ return (evutil_getenv_(environment) != NULL); } int event_base_get_features(const struct event_base *base) { return base->evsel->features; } void event_enable_debug_mode(void) { #ifndef EVENT__DISABLE_DEBUG_MODE if (event_debug_mode_on_) event_errx(1, "%s was called twice!", __func__); if (event_debug_mode_too_late) event_errx(1, "%s must be called *before* creating any events " "or event_bases",__func__); event_debug_mode_on_ = 1; HT_INIT(event_debug_map, &global_debug_map); #endif } void event_disable_debug_mode(void) { #ifndef EVENT__DISABLE_DEBUG_MODE struct event_debug_entry **ent, *victim; EVLOCK_LOCK(event_debug_map_lock_, 0); for (ent = HT_START(event_debug_map, &global_debug_map); ent; ) { victim = *ent; ent = HT_NEXT_RMV(event_debug_map, &global_debug_map, ent); mm_free(victim); } HT_CLEAR(event_debug_map, &global_debug_map); EVLOCK_UNLOCK(event_debug_map_lock_ , 0); event_debug_mode_on_ = 0; #endif } struct event_base * event_base_new_with_config(const struct event_config *cfg) { int i; struct event_base *base; int should_check_environment; #ifndef EVENT__DISABLE_DEBUG_MODE event_debug_mode_too_late = 1; #endif if ((base = mm_calloc(1, sizeof(struct event_base))) == NULL) { event_warn("%s: calloc", __func__); return NULL; } if (cfg) base->flags = cfg->flags; should_check_environment = !(cfg && (cfg->flags & EVENT_BASE_FLAG_IGNORE_ENV)); { struct timeval tmp; int precise_time = cfg && (cfg->flags & EVENT_BASE_FLAG_PRECISE_TIMER); int flags; if (should_check_environment && !precise_time) { precise_time = evutil_getenv_("EVENT_PRECISE_TIMER") != NULL; if (precise_time) { base->flags |= EVENT_BASE_FLAG_PRECISE_TIMER; } } flags = precise_time ? EV_MONOT_PRECISE : 0; evutil_configure_monotonic_time_(&base->monotonic_timer, flags); gettime(base, &tmp); } min_heap_ctor_(&base->timeheap); base->sig.ev_signal_pair[0] = -1; base->sig.ev_signal_pair[1] = -1; base->th_notify_fd[0] = -1; base->th_notify_fd[1] = -1; TAILQ_INIT(&base->active_later_queue); evmap_io_initmap_(&base->io); evmap_signal_initmap_(&base->sigmap); event_changelist_init_(&base->changelist); base->evbase = NULL; if (cfg) { memcpy(&base->max_dispatch_time, &cfg->max_dispatch_interval, sizeof(struct timeval)); base->limit_callbacks_after_prio = cfg->limit_callbacks_after_prio; } else { base->max_dispatch_time.tv_sec = -1; base->limit_callbacks_after_prio = 1; } if (cfg && cfg->max_dispatch_callbacks >= 0) { base->max_dispatch_callbacks = cfg->max_dispatch_callbacks; } else { base->max_dispatch_callbacks = INT_MAX; } if (base->max_dispatch_callbacks == INT_MAX && base->max_dispatch_time.tv_sec == -1) base->limit_callbacks_after_prio = INT_MAX; for (i = 0; eventops[i] && !base->evbase; i++) { if (cfg != NULL) { /* determine if this backend should be avoided */ if (event_config_is_avoided_method(cfg, eventops[i]->name)) continue; if ((eventops[i]->features & cfg->require_features) != cfg->require_features) continue; } /* also obey the environment variables */ if (should_check_environment && event_is_method_disabled(eventops[i]->name)) continue; base->evsel = eventops[i]; base->evbase = base->evsel->init(base); } if (base->evbase == NULL) { event_warnx("%s: no event mechanism available", __func__); base->evsel = NULL; event_base_free(base); return NULL; } if (evutil_getenv_("EVENT_SHOW_METHOD")) event_msgx("libevent using: %s", base->evsel->name); /* allocate a single active event queue */ if (event_base_priority_init(base, 1) < 0) { event_base_free(base); return NULL; } /* prepare for threading */ #if !defined(EVENT__DISABLE_THREAD_SUPPORT) && !defined(EVENT__DISABLE_DEBUG_MODE) event_debug_created_threadable_ctx_ = 1; #endif #ifndef EVENT__DISABLE_THREAD_SUPPORT if (EVTHREAD_LOCKING_ENABLED() && (!cfg || !(cfg->flags & EVENT_BASE_FLAG_NOLOCK))) { int r; EVTHREAD_ALLOC_LOCK(base->th_base_lock, 0); EVTHREAD_ALLOC_COND(base->current_event_cond); r = evthread_make_base_notifiable(base); if (r<0) { event_warnx("%s: Unable to make base notifiable.", __func__); event_base_free(base); return NULL; } } #endif #ifdef _WIN32 if (cfg && (cfg->flags & EVENT_BASE_FLAG_STARTUP_IOCP)) event_base_start_iocp_(base, cfg->n_cpus_hint); #endif return (base); } int event_base_start_iocp_(struct event_base *base, int n_cpus) { #ifdef _WIN32 if (base->iocp) return 0; base->iocp = event_iocp_port_launch_(n_cpus); if (!base->iocp) { event_warnx("%s: Couldn't launch IOCP", __func__); return -1; } return 0; #else return -1; #endif } void event_base_stop_iocp_(struct event_base *base) { #ifdef _WIN32 int rv; if (!base->iocp) return; rv = event_iocp_shutdown_(base->iocp, -1); EVUTIL_ASSERT(rv >= 0); base->iocp = NULL; #endif } static int event_base_cancel_single_callback_(struct event_base *base, struct event_callback *evcb, int run_finalizers) { int result = 0; if (evcb->evcb_flags & EVLIST_INIT) { struct event *ev = event_callback_to_event(evcb); if (!(ev->ev_flags & EVLIST_INTERNAL)) { event_del_(ev, EVENT_DEL_EVEN_IF_FINALIZING); result = 1; } } else { EVBASE_ACQUIRE_LOCK(base, th_base_lock); event_callback_cancel_nolock_(base, evcb, 1); EVBASE_RELEASE_LOCK(base, th_base_lock); result = 1; } if (run_finalizers && (evcb->evcb_flags & EVLIST_FINALIZING)) { switch (evcb->evcb_closure) { case EV_CLOSURE_EVENT_FINALIZE: case EV_CLOSURE_EVENT_FINALIZE_FREE: { struct event *ev = event_callback_to_event(evcb); ev->ev_evcallback.evcb_cb_union.evcb_evfinalize(ev, ev->ev_arg); if (evcb->evcb_closure == EV_CLOSURE_EVENT_FINALIZE_FREE) mm_free(ev); break; } case EV_CLOSURE_CB_FINALIZE: evcb->evcb_cb_union.evcb_cbfinalize(evcb, evcb->evcb_arg); break; default: break; } } return result; } static int event_base_free_queues_(struct event_base *base, int run_finalizers) { int deleted = 0, i; for (i = 0; i < base->nactivequeues; ++i) { struct event_callback *evcb, *next; for (evcb = TAILQ_FIRST(&base->activequeues[i]); evcb; ) { next = TAILQ_NEXT(evcb, evcb_active_next); deleted += event_base_cancel_single_callback_(base, evcb, run_finalizers); evcb = next; } } { struct event_callback *evcb; while ((evcb = TAILQ_FIRST(&base->active_later_queue))) { deleted += event_base_cancel_single_callback_(base, evcb, run_finalizers); } } return deleted; } static void event_base_free_(struct event_base *base, int run_finalizers) { int i, n_deleted=0; struct event *ev; /* XXXX grab the lock? If there is contention when one thread frees * the base, then the contending thread will be very sad soon. */ /* event_base_free(NULL) is how to free the current_base if we * made it with event_init and forgot to hold a reference to it. */ if (base == NULL && current_base) base = current_base; /* Don't actually free NULL. */ if (base == NULL) { event_warnx("%s: no base to free", __func__); return; } /* XXX(niels) - check for internal events first */ #ifdef _WIN32 event_base_stop_iocp_(base); #endif /* threading fds if we have them */ if (base->th_notify_fd[0] != -1) { event_del(&base->th_notify); EVUTIL_CLOSESOCKET(base->th_notify_fd[0]); if (base->th_notify_fd[1] != -1) EVUTIL_CLOSESOCKET(base->th_notify_fd[1]); base->th_notify_fd[0] = -1; base->th_notify_fd[1] = -1; event_debug_unassign(&base->th_notify); } /* Delete all non-internal events. */ evmap_delete_all_(base); while ((ev = min_heap_top_(&base->timeheap)) != NULL) { event_del(ev); ++n_deleted; } for (i = 0; i < base->n_common_timeouts; ++i) { struct common_timeout_list *ctl = base->common_timeout_queues[i]; event_del(&ctl->timeout_event); /* Internal; doesn't count */ event_debug_unassign(&ctl->timeout_event); for (ev = TAILQ_FIRST(&ctl->events); ev; ) { struct event *next = TAILQ_NEXT(ev, ev_timeout_pos.ev_next_with_common_timeout); if (!(ev->ev_flags & EVLIST_INTERNAL)) { event_del(ev); ++n_deleted; } ev = next; } mm_free(ctl); } if (base->common_timeout_queues) mm_free(base->common_timeout_queues); for (;;) { /* For finalizers we can register yet another finalizer out from * finalizer, and iff finalizer will be in active_later_queue we can * add finalizer to activequeues, and we will have events in * activequeues after this function returns, which is not what we want * (we even have an assertion for this). * * A simple case is bufferevent with underlying (i.e. filters). */ int ii = event_base_free_queues_(base, run_finalizers); event_debug(("%s: %d events freed", __func__, ii)); if (!i) { break; } n_deleted += ii; } if (n_deleted) event_debug(("%s: %d events were still set in base", __func__, n_deleted)); while (LIST_FIRST(&base->once_events)) { struct event_once *eonce = LIST_FIRST(&base->once_events); LIST_REMOVE(eonce, next_once); mm_free(eonce); } if (base->evsel != NULL && base->evsel->dealloc != NULL) base->evsel->dealloc(base); for (i = 0; i < base->nactivequeues; ++i) EVUTIL_ASSERT(TAILQ_EMPTY(&base->activequeues[i])); EVUTIL_ASSERT(min_heap_empty_(&base->timeheap)); min_heap_dtor_(&base->timeheap); mm_free(base->activequeues); evmap_io_clear_(&base->io); evmap_signal_clear_(&base->sigmap); event_changelist_freemem_(&base->changelist); EVTHREAD_FREE_LOCK(base->th_base_lock, 0); EVTHREAD_FREE_COND(base->current_event_cond); /* If we're freeing current_base, there won't be a current_base. */ if (base == current_base) current_base = NULL; mm_free(base); } void event_base_free_nofinalize(struct event_base *base) { event_base_free_(base, 0); } void event_base_free(struct event_base *base) { event_base_free_(base, 1); } /* Fake eventop; used to disable the backend temporarily inside event_reinit * so that we can call event_del() on an event without telling the backend. */ static int nil_backend_del(struct event_base *b, evutil_socket_t fd, short old, short events, void *fdinfo) { return 0; } const struct eventop nil_eventop = { "nil", NULL, /* init: unused. */ NULL, /* add: unused. */ nil_backend_del, /* del: used, so needs to be killed. */ NULL, /* dispatch: unused. */ NULL, /* dealloc: unused. */ 0, 0, 0 }; /* reinitialize the event base after a fork */ int event_reinit(struct event_base *base) { const struct eventop *evsel; int res = 0; int was_notifiable = 0; int had_signal_added = 0; EVBASE_ACQUIRE_LOCK(base, th_base_lock); evsel = base->evsel; /* check if this event mechanism requires reinit on the backend */ if (evsel->need_reinit) { /* We're going to call event_del() on our notify events (the * ones that tell about signals and wakeup events). But we * don't actually want to tell the backend to change its * state, since it might still share some resource (a kqueue, * an epoll fd) with the parent process, and we don't want to * delete the fds from _that_ backend, we temporarily stub out * the evsel with a replacement. */ base->evsel = &nil_eventop; } /* We need to re-create a new signal-notification fd and a new * thread-notification fd. Otherwise, we'll still share those with * the parent process, which would make any notification sent to them * get received by one or both of the event loops, more or less at * random. */ if (base->sig.ev_signal_added) { event_del_nolock_(&base->sig.ev_signal, EVENT_DEL_AUTOBLOCK); event_debug_unassign(&base->sig.ev_signal); memset(&base->sig.ev_signal, 0, sizeof(base->sig.ev_signal)); had_signal_added = 1; base->sig.ev_signal_added = 0; } if (base->sig.ev_signal_pair[0] != -1) EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[0]); if (base->sig.ev_signal_pair[1] != -1) EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[1]); if (base->th_notify_fn != NULL) { was_notifiable = 1; base->th_notify_fn = NULL; } if (base->th_notify_fd[0] != -1) { event_del_nolock_(&base->th_notify, EVENT_DEL_AUTOBLOCK); EVUTIL_CLOSESOCKET(base->th_notify_fd[0]); if (base->th_notify_fd[1] != -1) EVUTIL_CLOSESOCKET(base->th_notify_fd[1]); base->th_notify_fd[0] = -1; base->th_notify_fd[1] = -1; event_debug_unassign(&base->th_notify); } /* Replace the original evsel. */ base->evsel = evsel; if (evsel->need_reinit) { /* Reconstruct the backend through brute-force, so that we do * not share any structures with the parent process. For some * backends, this is necessary: epoll and kqueue, for * instance, have events associated with a kernel * structure. If didn't reinitialize, we'd share that * structure with the parent process, and any changes made by * the parent would affect our backend's behavior (and vice * versa). */ if (base->evsel->dealloc != NULL) base->evsel->dealloc(base); base->evbase = evsel->init(base); if (base->evbase == NULL) { event_errx(1, "%s: could not reinitialize event mechanism", __func__); res = -1; goto done; } /* Empty out the changelist (if any): we are starting from a * blank slate. */ event_changelist_freemem_(&base->changelist); /* Tell the event maps to re-inform the backend about all * pending events. This will make the signal notification * event get re-created if necessary. */ if (evmap_reinit_(base) < 0) res = -1; } else { res = evsig_init_(base); if (res == 0 && had_signal_added) { res = event_add_nolock_(&base->sig.ev_signal, NULL, 0); if (res == 0) base->sig.ev_signal_added = 1; } } /* If we were notifiable before, and nothing just exploded, become * notifiable again. */ if (was_notifiable && res == 0) res = evthread_make_base_notifiable_nolock_(base); done: EVBASE_RELEASE_LOCK(base, th_base_lock); return (res); } /* Get the monotonic time for this event_base' timer */ int event_gettime_monotonic(struct event_base *base, struct timeval *tv) { int rv = -1; if (base && tv) { EVBASE_ACQUIRE_LOCK(base, th_base_lock); rv = evutil_gettime_monotonic_(&(base->monotonic_timer), tv); EVBASE_RELEASE_LOCK(base, th_base_lock); } return rv; } const char ** event_get_supported_methods(void) { static const char **methods = NULL; const struct eventop **method; const char **tmp; int i = 0, k; /* count all methods */ for (method = &eventops[0]; *method != NULL; ++method) { ++i; } /* allocate one more than we need for the NULL pointer */ tmp = mm_calloc((i + 1), sizeof(char *)); if (tmp == NULL) return (NULL); /* populate the array with the supported methods */ for (k = 0, i = 0; eventops[k] != NULL; ++k) { tmp[i++] = eventops[k]->name; } tmp[i] = NULL; if (methods != NULL) mm_free(__UNCONST(methods)); methods = tmp; return (methods); } struct event_config * event_config_new(void) { struct event_config *cfg = mm_calloc(1, sizeof(*cfg)); if (cfg == NULL) return (NULL); TAILQ_INIT(&cfg->entries); cfg->max_dispatch_interval.tv_sec = -1; cfg->max_dispatch_callbacks = INT_MAX; cfg->limit_callbacks_after_prio = 1; return (cfg); } static void event_config_entry_free(struct event_config_entry *entry) { if (entry->avoid_method != NULL) mm_free(__UNCONST(entry->avoid_method)); mm_free(entry); } void event_config_free(struct event_config *cfg) { struct event_config_entry *entry; while ((entry = TAILQ_FIRST(&cfg->entries)) != NULL) { TAILQ_REMOVE(&cfg->entries, entry, next); event_config_entry_free(entry); } mm_free(cfg); } int event_config_set_flag(struct event_config *cfg, int flag) { if (!cfg) return -1; cfg->flags |= flag; return 0; } int event_config_avoid_method(struct event_config *cfg, const char *method) { struct event_config_entry *entry = mm_malloc(sizeof(*entry)); if (entry == NULL) return (-1); if ((entry->avoid_method = mm_strdup(method)) == NULL) { mm_free(entry); return (-1); } TAILQ_INSERT_TAIL(&cfg->entries, entry, next); return (0); } int event_config_require_features(struct event_config *cfg, int features) { if (!cfg) return (-1); cfg->require_features = features; return (0); } int event_config_set_num_cpus_hint(struct event_config *cfg, int cpus) { if (!cfg) return (-1); cfg->n_cpus_hint = cpus; return (0); } int event_config_set_max_dispatch_interval(struct event_config *cfg, const struct timeval *max_interval, int max_callbacks, int min_priority) { if (max_interval) memcpy(&cfg->max_dispatch_interval, max_interval, sizeof(struct timeval)); else cfg->max_dispatch_interval.tv_sec = -1; cfg->max_dispatch_callbacks = max_callbacks >= 0 ? max_callbacks : INT_MAX; if (min_priority < 0) min_priority = 0; cfg->limit_callbacks_after_prio = min_priority; return (0); } int event_priority_init(int npriorities) { return event_base_priority_init(current_base, npriorities); } int event_base_priority_init(struct event_base *base, int npriorities) { int i, r; r = -1; EVBASE_ACQUIRE_LOCK(base, th_base_lock); if (N_ACTIVE_CALLBACKS(base) || npriorities < 1 || npriorities >= EVENT_MAX_PRIORITIES) goto err; if (npriorities == base->nactivequeues) goto ok; if (base->nactivequeues) { mm_free(base->activequeues); base->nactivequeues = 0; } /* Allocate our priority queues */ base->activequeues = (struct evcallback_list *) mm_calloc(npriorities, sizeof(struct evcallback_list)); if (base->activequeues == NULL) { event_warn("%s: calloc", __func__); goto err; } base->nactivequeues = npriorities; for (i = 0; i < base->nactivequeues; ++i) { TAILQ_INIT(&base->activequeues[i]); } ok: r = 0; err: EVBASE_RELEASE_LOCK(base, th_base_lock); return (r); } int event_base_get_npriorities(struct event_base *base) { int n; if (base == NULL) base = current_base; EVBASE_ACQUIRE_LOCK(base, th_base_lock); n = base->nactivequeues; EVBASE_RELEASE_LOCK(base, th_base_lock); return (n); } int event_base_get_num_events(struct event_base *base, unsigned int type) { int r = 0; EVBASE_ACQUIRE_LOCK(base, th_base_lock); if (type & EVENT_BASE_COUNT_ACTIVE) r += base->event_count_active; if (type & EVENT_BASE_COUNT_VIRTUAL) r += base->virtual_event_count; if (type & EVENT_BASE_COUNT_ADDED) r += base->event_count; EVBASE_RELEASE_LOCK(base, th_base_lock); return r; } int event_base_get_max_events(struct event_base *base, unsigned int type, int clear) { int r = 0; EVBASE_ACQUIRE_LOCK(base, th_base_lock); if (type & EVENT_BASE_COUNT_ACTIVE) { r += base->event_count_active_max; if (clear) base->event_count_active_max = 0; } if (type & EVENT_BASE_COUNT_VIRTUAL) { r += base->virtual_event_count_max; if (clear) base->virtual_event_count_max = 0; } if (type & EVENT_BASE_COUNT_ADDED) { r += base->event_count_max; if (clear) base->event_count_max = 0; } EVBASE_RELEASE_LOCK(base, th_base_lock); return r; } /* Returns true iff we're currently watching any events. */ static int event_haveevents(struct event_base *base) { /* Caller must hold th_base_lock */ return (base->virtual_event_count > 0 || base->event_count > 0); } /* "closure" function called when processing active signal events */ static inline void event_signal_closure(struct event_base *base, struct event *ev) { short ncalls; int should_break; /* Allows deletes to work */ ncalls = ev->ev_ncalls; if (ncalls != 0) ev->ev_pncalls = &ncalls; EVBASE_RELEASE_LOCK(base, th_base_lock); while (ncalls) { ncalls--; ev->ev_ncalls = ncalls; if (ncalls == 0) ev->ev_pncalls = NULL; (*ev->ev_callback)(ev->ev_fd, ev->ev_res, ev->ev_arg); EVBASE_ACQUIRE_LOCK(base, th_base_lock); should_break = base->event_break; EVBASE_RELEASE_LOCK(base, th_base_lock); if (should_break) { if (ncalls != 0) ev->ev_pncalls = NULL; return; } } ev->ev_pncalls = NULL; } /* Common timeouts are special timeouts that are handled as queues rather than * in the minheap. This is more efficient than the minheap if we happen to * know that we're going to get several thousands of timeout events all with * the same timeout value. * * Since all our timeout handling code assumes timevals can be copied, * assigned, etc, we can't use "magic pointer" to encode these common * timeouts. Searching through a list to see if every timeout is common could * also get inefficient. Instead, we take advantage of the fact that tv_usec * is 32 bits long, but only uses 20 of those bits (since it can never be over * 999999.) We use the top bits to encode 4 bites of magic number, and 8 bits * of index into the event_base's aray of common timeouts. */ #define MICROSECONDS_MASK COMMON_TIMEOUT_MICROSECONDS_MASK #define COMMON_TIMEOUT_IDX_MASK 0x0ff00000 #define COMMON_TIMEOUT_IDX_SHIFT 20 #define COMMON_TIMEOUT_MASK 0xf0000000 #define COMMON_TIMEOUT_MAGIC 0x50000000 #define COMMON_TIMEOUT_IDX(tv) \ (((tv)->tv_usec & COMMON_TIMEOUT_IDX_MASK)>>COMMON_TIMEOUT_IDX_SHIFT) /** Return true iff if 'tv' is a common timeout in 'base' */ static inline int is_common_timeout(const struct timeval *tv, const struct event_base *base) { int idx; if ((tv->tv_usec & COMMON_TIMEOUT_MASK) != COMMON_TIMEOUT_MAGIC) return 0; idx = COMMON_TIMEOUT_IDX(tv); return idx < base->n_common_timeouts; } /* True iff tv1 and tv2 have the same common-timeout index, or if neither * one is a common timeout. */ static inline int is_same_common_timeout(const struct timeval *tv1, const struct timeval *tv2) { return (tv1->tv_usec & ~MICROSECONDS_MASK) == (tv2->tv_usec & ~MICROSECONDS_MASK); } /** Requires that 'tv' is a common timeout. Return the corresponding * common_timeout_list. */ static inline struct common_timeout_list * get_common_timeout_list(struct event_base *base, const struct timeval *tv) { return base->common_timeout_queues[COMMON_TIMEOUT_IDX(tv)]; } #if 0 static inline int common_timeout_ok(const struct timeval *tv, struct event_base *base) { const struct timeval *expect = &get_common_timeout_list(base, tv)->duration; return tv->tv_sec == expect->tv_sec && tv->tv_usec == expect->tv_usec; } #endif /* Add the timeout for the first event in given common timeout list to the * event_base's minheap. */ static void common_timeout_schedule(struct common_timeout_list *ctl, const struct timeval *now, struct event *head) { struct timeval timeout = head->ev_timeout; timeout.tv_usec &= MICROSECONDS_MASK; event_add_nolock_(&ctl->timeout_event, &timeout, 1); } /* Callback: invoked when the timeout for a common timeout queue triggers. * This means that (at least) the first event in that queue should be run, * and the timeout should be rescheduled if there are more events. */ static void common_timeout_callback(evutil_socket_t fd, short what, void *arg) { struct timeval now; struct common_timeout_list *ctl = arg; struct event_base *base = ctl->base; struct event *ev = NULL; EVBASE_ACQUIRE_LOCK(base, th_base_lock); gettime(base, &now); while (1) { ev = TAILQ_FIRST(&ctl->events); if (!ev || ev->ev_timeout.tv_sec > now.tv_sec || (ev->ev_timeout.tv_sec == now.tv_sec && (ev->ev_timeout.tv_usec&MICROSECONDS_MASK) > now.tv_usec)) break; event_del_nolock_(ev, EVENT_DEL_NOBLOCK); event_active_nolock_(ev, EV_TIMEOUT, 1); } if (ev) common_timeout_schedule(ctl, &now, ev); EVBASE_RELEASE_LOCK(base, th_base_lock); } #define MAX_COMMON_TIMEOUTS 256 const struct timeval * event_base_init_common_timeout(struct event_base *base, const struct timeval *duration) { int i; struct timeval tv; const struct timeval *result=NULL; struct common_timeout_list *new_ctl; EVBASE_ACQUIRE_LOCK(base, th_base_lock); if (duration->tv_usec > 1000000) { memcpy(&tv, duration, sizeof(struct timeval)); if (is_common_timeout(duration, base)) tv.tv_usec &= MICROSECONDS_MASK; tv.tv_sec += tv.tv_usec / 1000000; tv.tv_usec %= 1000000; duration = &tv; } for (i = 0; i < base->n_common_timeouts; ++i) { const struct common_timeout_list *ctl = base->common_timeout_queues[i]; if (duration->tv_sec == ctl->duration.tv_sec && duration->tv_usec == (ctl->duration.tv_usec & MICROSECONDS_MASK)) { EVUTIL_ASSERT(is_common_timeout(&ctl->duration, base)); result = &ctl->duration; goto done; } } if (base->n_common_timeouts == MAX_COMMON_TIMEOUTS) { event_warnx("%s: Too many common timeouts already in use; " "we only support %d per event_base", __func__, MAX_COMMON_TIMEOUTS); goto done; } if (base->n_common_timeouts_allocated == base->n_common_timeouts) { int n = base->n_common_timeouts < 16 ? 16 : base->n_common_timeouts*2; struct common_timeout_list **newqueues = mm_realloc(base->common_timeout_queues, n*sizeof(struct common_timeout_queue *)); if (!newqueues) { event_warn("%s: realloc",__func__); goto done; } base->n_common_timeouts_allocated = n; base->common_timeout_queues = newqueues; } new_ctl = mm_calloc(1, sizeof(struct common_timeout_list)); if (!new_ctl) { event_warn("%s: calloc",__func__); goto done; } TAILQ_INIT(&new_ctl->events); new_ctl->duration.tv_sec = duration->tv_sec; new_ctl->duration.tv_usec = duration->tv_usec | COMMON_TIMEOUT_MAGIC | (base->n_common_timeouts << COMMON_TIMEOUT_IDX_SHIFT); evtimer_assign(&new_ctl->timeout_event, base, common_timeout_callback, new_ctl); new_ctl->timeout_event.ev_flags |= EVLIST_INTERNAL; event_priority_set(&new_ctl->timeout_event, 0); new_ctl->base = base; base->common_timeout_queues[base->n_common_timeouts++] = new_ctl; result = &new_ctl->duration; done: if (result) EVUTIL_ASSERT(is_common_timeout(result, base)); EVBASE_RELEASE_LOCK(base, th_base_lock); return result; } /* Closure function invoked when we're activating a persistent event. */ static inline void event_persist_closure(struct event_base *base, struct event *ev) { void (*evcb_callback)(evutil_socket_t, short, void *); // Other fields of *ev that must be stored before executing evutil_socket_t evcb_fd; short evcb_res; void *evcb_arg; /* reschedule the persistent event if we have a timeout. */ if (ev->ev_io_timeout.tv_sec || ev->ev_io_timeout.tv_usec) { /* If there was a timeout, we want it to run at an interval of * ev_io_timeout after the last time it was _scheduled_ for, * not ev_io_timeout after _now_. If it fired for another * reason, though, the timeout ought to start ticking _now_. */ struct timeval run_at, relative_to, delay, now; ev_uint32_t usec_mask = 0; EVUTIL_ASSERT(is_same_common_timeout(&ev->ev_timeout, &ev->ev_io_timeout)); gettime(base, &now); if (is_common_timeout(&ev->ev_timeout, base)) { delay = ev->ev_io_timeout; usec_mask = delay.tv_usec & ~MICROSECONDS_MASK; delay.tv_usec &= MICROSECONDS_MASK; if (ev->ev_res & EV_TIMEOUT) { relative_to = ev->ev_timeout; relative_to.tv_usec &= MICROSECONDS_MASK; } else { relative_to = now; } } else { delay = ev->ev_io_timeout; if (ev->ev_res & EV_TIMEOUT) { relative_to = ev->ev_timeout; } else { relative_to = now; } } evutil_timeradd(&relative_to, &delay, &run_at); if (evutil_timercmp(&run_at, &now, <)) { /* Looks like we missed at least one invocation due to * a clock jump, not running the event loop for a * while, really slow callbacks, or * something. Reschedule relative to now. */ evutil_timeradd(&now, &delay, &run_at); } run_at.tv_usec |= usec_mask; event_add_nolock_(ev, &run_at, 1); } // Save our callback before we release the lock evcb_callback = ev->ev_callback; evcb_fd = ev->ev_fd; evcb_res = ev->ev_res; evcb_arg = ev->ev_arg; // Release the lock EVBASE_RELEASE_LOCK(base, th_base_lock); // Execute the callback (evcb_callback)(evcb_fd, evcb_res, evcb_arg); } /* Helper for event_process_active to process all the events in a single queue, releasing the lock as we go. This function requires that the lock be held when it's invoked. Returns -1 if we get a signal or an event_break that means we should stop processing any active events now. Otherwise returns the number of non-internal event_callbacks that we processed. */ static int event_process_active_single_queue(struct event_base *base, struct evcallback_list *activeq, int max_to_process, const struct timeval *endtime) { struct event_callback *evcb; int count = 0; EVUTIL_ASSERT(activeq != NULL); for (evcb = TAILQ_FIRST(activeq); evcb; evcb = TAILQ_FIRST(activeq)) { struct event *ev=NULL; if (evcb->evcb_flags & EVLIST_INIT) { ev = event_callback_to_event(evcb); if (ev->ev_events & EV_PERSIST || ev->ev_flags & EVLIST_FINALIZING) event_queue_remove_active(base, evcb); else event_del_nolock_(ev, EVENT_DEL_NOBLOCK); event_debug(( "event_process_active: event: %p, %s%s%scall %p", ev, ev->ev_res & EV_READ ? "EV_READ " : " ", ev->ev_res & EV_WRITE ? "EV_WRITE " : " ", ev->ev_res & EV_CLOSED ? "EV_CLOSED " : " ", ev->ev_callback)); } else { event_queue_remove_active(base, evcb); event_debug(("event_process_active: event_callback %p, " "closure %d, call %p", evcb, evcb->evcb_closure, evcb->evcb_cb_union.evcb_callback)); } if (!(evcb->evcb_flags & EVLIST_INTERNAL)) ++count; base->current_event = evcb; #ifndef EVENT__DISABLE_THREAD_SUPPORT base->current_event_waiters = 0; #endif switch (evcb->evcb_closure) { case EV_CLOSURE_EVENT_SIGNAL: EVUTIL_ASSERT(ev != NULL); event_signal_closure(base, ev); break; case EV_CLOSURE_EVENT_PERSIST: EVUTIL_ASSERT(ev != NULL); event_persist_closure(base, ev); break; case EV_CLOSURE_EVENT: { void (*evcb_callback)(evutil_socket_t, short, void *); short res; EVUTIL_ASSERT(ev != NULL); evcb_callback = *ev->ev_callback; res = ev->ev_res; EVBASE_RELEASE_LOCK(base, th_base_lock); evcb_callback(ev->ev_fd, res, ev->ev_arg); } break; case EV_CLOSURE_CB_SELF: { void (*evcb_selfcb)(struct event_callback *, void *) = evcb->evcb_cb_union.evcb_selfcb; EVBASE_RELEASE_LOCK(base, th_base_lock); evcb_selfcb(evcb, evcb->evcb_arg); } break; case EV_CLOSURE_EVENT_FINALIZE: case EV_CLOSURE_EVENT_FINALIZE_FREE: { void (*evcb_evfinalize)(struct event *, void *); int evcb_closure = evcb->evcb_closure; EVUTIL_ASSERT(ev != NULL); base->current_event = NULL; evcb_evfinalize = ev->ev_evcallback.evcb_cb_union.evcb_evfinalize; EVUTIL_ASSERT((evcb->evcb_flags & EVLIST_FINALIZING)); EVBASE_RELEASE_LOCK(base, th_base_lock); event_debug_note_teardown_(ev); evcb_evfinalize(ev, ev->ev_arg); if (evcb_closure == EV_CLOSURE_EVENT_FINALIZE_FREE) mm_free(ev); } break; case EV_CLOSURE_CB_FINALIZE: { void (*evcb_cbfinalize)(struct event_callback *, void *) = evcb->evcb_cb_union.evcb_cbfinalize; base->current_event = NULL; EVUTIL_ASSERT((evcb->evcb_flags & EVLIST_FINALIZING)); EVBASE_RELEASE_LOCK(base, th_base_lock); evcb_cbfinalize(evcb, evcb->evcb_arg); } break; default: EVUTIL_ASSERT(0); } EVBASE_ACQUIRE_LOCK(base, th_base_lock); base->current_event = NULL; #ifndef EVENT__DISABLE_THREAD_SUPPORT if (base->current_event_waiters) { base->current_event_waiters = 0; EVTHREAD_COND_BROADCAST(base->current_event_cond); } #endif if (base->event_break) return -1; if (count >= max_to_process) return count; if (count && endtime) { struct timeval now; update_time_cache(base); gettime(base, &now); if (evutil_timercmp(&now, endtime, >=)) return count; } if (base->event_continue) break; } return count; } /* * Active events are stored in priority queues. Lower priorities are always * process before higher priorities. Low priority events can starve high * priority ones. */ static int event_process_active(struct event_base *base) { /* Caller must hold th_base_lock */ struct evcallback_list *activeq = NULL; int i, c = 0; const struct timeval *endtime; struct timeval tv; const int maxcb = base->max_dispatch_callbacks; const int limit_after_prio = base->limit_callbacks_after_prio; if (base->max_dispatch_time.tv_sec >= 0) { update_time_cache(base); gettime(base, &tv); evutil_timeradd(&base->max_dispatch_time, &tv, &tv); endtime = &tv; } else { endtime = NULL; } for (i = 0; i < base->nactivequeues; ++i) { if (TAILQ_FIRST(&base->activequeues[i]) != NULL) { base->event_running_priority = i; activeq = &base->activequeues[i]; if (i < limit_after_prio) c = event_process_active_single_queue(base, activeq, INT_MAX, NULL); else c = event_process_active_single_queue(base, activeq, maxcb, endtime); if (c < 0) { goto done; } else if (c > 0) break; /* Processed a real event; do not * consider lower-priority events */ /* If we get here, all of the events we processed * were internal. Continue. */ } } done: base->event_running_priority = -1; return c; } /* * Wait continuously for events. We exit only if no events are left. */ int event_dispatch(void) { return (event_loop(0)); } int event_base_dispatch(struct event_base *event_base) { return (event_base_loop(event_base, 0)); } const char * event_base_get_method(const struct event_base *base) { EVUTIL_ASSERT(base); return (base->evsel->name); } /** Callback: used to implement event_base_loopexit by telling the event_base * that it's time to exit its loop. */ static void event_loopexit_cb(evutil_socket_t fd, short what, void *arg) { struct event_base *base = arg; base->event_gotterm = 1; } int event_loopexit(const struct timeval *tv) { return (event_once(-1, EV_TIMEOUT, event_loopexit_cb, current_base, tv)); } int event_base_loopexit(struct event_base *event_base, const struct timeval *tv) { return (event_base_once(event_base, -1, EV_TIMEOUT, event_loopexit_cb, event_base, tv)); } int event_loopbreak(void) { return (event_base_loopbreak(current_base)); } int event_base_loopbreak(struct event_base *event_base) { int r = 0; if (event_base == NULL) return (-1); EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); event_base->event_break = 1; if (EVBASE_NEED_NOTIFY(event_base)) { r = evthread_notify_base(event_base); } else { r = (0); } EVBASE_RELEASE_LOCK(event_base, th_base_lock); return r; } int event_base_loopcontinue(struct event_base *event_base) { int r = 0; if (event_base == NULL) return (-1); EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); event_base->event_continue = 1; if (EVBASE_NEED_NOTIFY(event_base)) { r = evthread_notify_base(event_base); } else { r = (0); } EVBASE_RELEASE_LOCK(event_base, th_base_lock); return r; } int event_base_got_break(struct event_base *event_base) { int res; EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); res = event_base->event_break; EVBASE_RELEASE_LOCK(event_base, th_base_lock); return res; } int event_base_got_exit(struct event_base *event_base) { int res; EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); res = event_base->event_gotterm; EVBASE_RELEASE_LOCK(event_base, th_base_lock); return res; } /* not thread safe */ int event_loop(int flags) { return event_base_loop(current_base, flags); } int event_base_loop(struct event_base *base, int flags) { const struct eventop *evsel = base->evsel; struct timeval tv; struct timeval *tv_p; int res, done, retval = 0; /* Grab the lock. We will release it inside evsel.dispatch, and again * as we invoke user callbacks. */ EVBASE_ACQUIRE_LOCK(base, th_base_lock); if (base->running_loop) { event_warnx("%s: reentrant invocation. Only one event_base_loop" " can run on each event_base at once.", __func__); EVBASE_RELEASE_LOCK(base, th_base_lock); return -1; } base->running_loop = 1; clear_time_cache(base); if (base->sig.ev_signal_added && base->sig.ev_n_signals_added) evsig_set_base_(base); done = 0; #ifndef EVENT__DISABLE_THREAD_SUPPORT base->th_owner_id = EVTHREAD_GET_ID(); #endif base->event_gotterm = base->event_break = 0; while (!done) { base->event_continue = 0; base->n_deferreds_queued = 0; /* Terminate the loop if we have been asked to */ if (base->event_gotterm) { break; } if (base->event_break) { break; } tv_p = &tv; if (!N_ACTIVE_CALLBACKS(base) && !(flags & EVLOOP_NONBLOCK)) { timeout_next(base, &tv_p); } else { /* * if we have active events, we just poll new events * without waiting. */ evutil_timerclear(&tv); } /* If we have no events, we just exit */ if (0==(flags&EVLOOP_NO_EXIT_ON_EMPTY) && !event_haveevents(base) && !N_ACTIVE_CALLBACKS(base)) { event_debug(("%s: no events registered.", __func__)); retval = 1; goto done; } event_queue_make_later_events_active(base); clear_time_cache(base); res = evsel->dispatch(base, tv_p); if (res == -1) { event_debug(("%s: dispatch returned unsuccessfully.", __func__)); retval = -1; goto done; } update_time_cache(base); timeout_process(base); if (N_ACTIVE_CALLBACKS(base)) { int n = event_process_active(base); if ((flags & EVLOOP_ONCE) && N_ACTIVE_CALLBACKS(base) == 0 && n != 0) done = 1; } else if (flags & EVLOOP_NONBLOCK) done = 1; } event_debug(("%s: asked to terminate loop.", __func__)); done: clear_time_cache(base); base->running_loop = 0; EVBASE_RELEASE_LOCK(base, th_base_lock); return (retval); } /* One-time callback to implement event_base_once: invokes the user callback, * then deletes the allocated storage */ static void event_once_cb(evutil_socket_t fd, short events, void *arg) { struct event_once *eonce = arg; (*eonce->cb)(fd, events, eonce->arg); EVBASE_ACQUIRE_LOCK(eonce->ev.ev_base, th_base_lock); LIST_REMOVE(eonce, next_once); EVBASE_RELEASE_LOCK(eonce->ev.ev_base, th_base_lock); event_debug_unassign(&eonce->ev); mm_free(eonce); } /* not threadsafe, event scheduled once. */ int event_once(evutil_socket_t fd, short events, void (*callback)(evutil_socket_t, short, void *), void *arg, const struct timeval *tv) { return event_base_once(current_base, fd, events, callback, arg, tv); } /* Schedules an event once */ int event_base_once(struct event_base *base, evutil_socket_t fd, short events, void (*callback)(evutil_socket_t, short, void *), void *arg, const struct timeval *tv) { struct event_once *eonce; int res = 0; int activate = 0; if (!base) return (-1); /* We cannot support signals that just fire once, or persistent * events. */ if (events & (EV_SIGNAL|EV_PERSIST)) return (-1); if ((eonce = mm_calloc(1, sizeof(struct event_once))) == NULL) return (-1); eonce->cb = callback; eonce->arg = arg; if ((events & (EV_TIMEOUT|EV_SIGNAL|EV_READ|EV_WRITE|EV_CLOSED)) == EV_TIMEOUT) { evtimer_assign(&eonce->ev, base, event_once_cb, eonce); if (tv == NULL || ! evutil_timerisset(tv)) { /* If the event is going to become active immediately, * don't put it on the timeout queue. This is one * idiom for scheduling a callback, so let's make * it fast (and order-preserving). */ activate = 1; } } else if (events & (EV_READ|EV_WRITE|EV_CLOSED)) { events &= EV_READ|EV_WRITE|EV_CLOSED; event_assign(&eonce->ev, base, fd, events, event_once_cb, eonce); } else { /* Bad event combination */ mm_free(eonce); return (-1); } if (res == 0) { EVBASE_ACQUIRE_LOCK(base, th_base_lock); if (activate) event_active_nolock_(&eonce->ev, EV_TIMEOUT, 1); else res = event_add_nolock_(&eonce->ev, tv, 0); if (res != 0) { mm_free(eonce); return (res); } else { LIST_INSERT_HEAD(&base->once_events, eonce, next_once); } EVBASE_RELEASE_LOCK(base, th_base_lock); } return (0); } int event_assign(struct event *ev, struct event_base *base, evutil_socket_t fd, short events, void (*callback)(evutil_socket_t, short, void *), void *arg) { if (!base) base = current_base; if (arg == &event_self_cbarg_ptr_) arg = ev; if (!(events & EV_SIGNAL)) event_debug_assert_socket_nonblocking_(fd); event_debug_assert_not_added_(ev); ev->ev_base = base; ev->ev_callback = callback; ev->ev_arg = arg; ev->ev_fd = fd; ev->ev_events = events; ev->ev_res = 0; ev->ev_flags = EVLIST_INIT; ev->ev_ncalls = 0; ev->ev_pncalls = NULL; if (events & EV_SIGNAL) { if ((events & (EV_READ|EV_WRITE|EV_CLOSED)) != 0) { event_warnx("%s: EV_SIGNAL is not compatible with " "EV_READ, EV_WRITE or EV_CLOSED", __func__); return -1; } ev->ev_closure = EV_CLOSURE_EVENT_SIGNAL; } else { if (events & EV_PERSIST) { evutil_timerclear(&ev->ev_io_timeout); ev->ev_closure = EV_CLOSURE_EVENT_PERSIST; } else { ev->ev_closure = EV_CLOSURE_EVENT; } } min_heap_elem_init_(ev); if (base != NULL) { /* by default, we put new events into the middle priority */ ev->ev_pri = base->nactivequeues / 2; } event_debug_note_setup_(ev); return 0; } int event_base_set(struct event_base *base, struct event *ev) { /* Only innocent events may be assigned to a different base */ if (ev->ev_flags != EVLIST_INIT) return (-1); event_debug_assert_is_setup_(ev); ev->ev_base = base; ev->ev_pri = base->nactivequeues/2; return (0); } void event_set(struct event *ev, evutil_socket_t fd, short events, void (*callback)(evutil_socket_t, short, void *), void *arg) { int r; r = event_assign(ev, current_base, fd, events, callback, arg); EVUTIL_ASSERT(r == 0); } void * event_self_cbarg(void) { return &event_self_cbarg_ptr_; } struct event * event_base_get_running_event(struct event_base *base) { struct event *ev = NULL; EVBASE_ACQUIRE_LOCK(base, th_base_lock); if (EVBASE_IN_THREAD(base)) { struct event_callback *evcb = base->current_event; if (evcb->evcb_flags & EVLIST_INIT) ev = event_callback_to_event(evcb); } EVBASE_RELEASE_LOCK(base, th_base_lock); return ev; } struct event * event_new(struct event_base *base, evutil_socket_t fd, short events, void (*cb)(evutil_socket_t, short, void *), void *arg) { struct event *ev; ev = mm_malloc(sizeof(struct event)); if (ev == NULL) return (NULL); if (event_assign(ev, base, fd, events, cb, arg) < 0) { mm_free(ev); return (NULL); } return (ev); } void event_free(struct event *ev) { /* This is disabled, so that events which have been finalized be a * valid target for event_free(). That's */ // event_debug_assert_is_setup_(ev); /* make sure that this event won't be coming back to haunt us. */ event_del(ev); event_debug_note_teardown_(ev); mm_free(ev); } void event_debug_unassign(struct event *ev) { event_debug_assert_not_added_(ev); event_debug_note_teardown_(ev); ev->ev_flags &= ~EVLIST_INIT; } #define EVENT_FINALIZE_FREE_ 0x10000 static int event_finalize_nolock_(struct event_base *base, unsigned flags, struct event *ev, event_finalize_callback_fn cb) { ev_uint8_t closure = (flags & EVENT_FINALIZE_FREE_) ? EV_CLOSURE_EVENT_FINALIZE_FREE : EV_CLOSURE_EVENT_FINALIZE; event_del_nolock_(ev, EVENT_DEL_NOBLOCK); ev->ev_closure = closure; ev->ev_evcallback.evcb_cb_union.evcb_evfinalize = cb; event_active_nolock_(ev, EV_FINALIZE, 1); ev->ev_flags |= EVLIST_FINALIZING; return 0; } static int event_finalize_impl_(unsigned flags, struct event *ev, event_finalize_callback_fn cb) { int r; struct event_base *base = ev->ev_base; if (EVUTIL_FAILURE_CHECK(!base)) { event_warnx("%s: event has no event_base set.", __func__); return -1; } EVBASE_ACQUIRE_LOCK(base, th_base_lock); r = event_finalize_nolock_(base, flags, ev, cb); EVBASE_RELEASE_LOCK(base, th_base_lock); return r; } int event_finalize(unsigned flags, struct event *ev, event_finalize_callback_fn cb) { return event_finalize_impl_(flags, ev, cb); } int event_free_finalize(unsigned flags, struct event *ev, event_finalize_callback_fn cb) { return event_finalize_impl_(flags|EVENT_FINALIZE_FREE_, ev, cb); } void event_callback_finalize_nolock_(struct event_base *base, unsigned flags, struct event_callback *evcb, void (*cb)(struct event_callback *, void *)) { struct event *ev = NULL; if (evcb->evcb_flags & EVLIST_INIT) { ev = event_callback_to_event(evcb); event_del_nolock_(ev, EVENT_DEL_NOBLOCK); } else { event_callback_cancel_nolock_(base, evcb, 0); /*XXX can this fail?*/ } evcb->evcb_closure = EV_CLOSURE_CB_FINALIZE; evcb->evcb_cb_union.evcb_cbfinalize = cb; event_callback_activate_nolock_(base, evcb); /* XXX can this really fail?*/ evcb->evcb_flags |= EVLIST_FINALIZING; } void event_callback_finalize_(struct event_base *base, unsigned flags, struct event_callback *evcb, void (*cb)(struct event_callback *, void *)) { EVBASE_ACQUIRE_LOCK(base, th_base_lock); event_callback_finalize_nolock_(base, flags, evcb, cb); EVBASE_RELEASE_LOCK(base, th_base_lock); } /** Internal: Finalize all of the n_cbs callbacks in evcbs. The provided * callback will be invoked on *one of them*, after they have *all* been * finalized. */ int event_callback_finalize_many_(struct event_base *base, int n_cbs, struct event_callback **evcbs, void (*cb)(struct event_callback *, void *)) { int n_pending = 0, i; if (base == NULL) base = current_base; EVBASE_ACQUIRE_LOCK(base, th_base_lock); event_debug(("%s: %d events finalizing", __func__, n_cbs)); /* At most one can be currently executing; the rest we just * cancel... But we always make sure that the finalize callback * runs. */ for (i = 0; i < n_cbs; ++i) { struct event_callback *evcb = evcbs[i]; if (evcb == base->current_event) { event_callback_finalize_nolock_(base, 0, evcb, cb); ++n_pending; } else { event_callback_cancel_nolock_(base, evcb, 0); } } if (n_pending == 0) { /* Just do the first one. */ event_callback_finalize_nolock_(base, 0, evcbs[0], cb); } EVBASE_RELEASE_LOCK(base, th_base_lock); return 0; } /* * Set's the priority of an event - if an event is already scheduled * changing the priority is going to fail. */ int event_priority_set(struct event *ev, int pri) { event_debug_assert_is_setup_(ev); if (ev->ev_flags & EVLIST_ACTIVE) return (-1); if (pri < 0 || pri >= ev->ev_base->nactivequeues) return (-1); ev->ev_pri = pri; return (0); } /* * Checks if a specific event is pending or scheduled. */ int event_pending(const struct event *ev, short event, struct timeval *tv) { int flags = 0; if (EVUTIL_FAILURE_CHECK(ev->ev_base == NULL)) { event_warnx("%s: event has no event_base set.", __func__); return 0; } EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); event_debug_assert_is_setup_(ev); if (ev->ev_flags & EVLIST_INSERTED) flags |= (ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED|EV_SIGNAL)); if (ev->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) flags |= ev->ev_res; if (ev->ev_flags & EVLIST_TIMEOUT) flags |= EV_TIMEOUT; event &= (EV_TIMEOUT|EV_READ|EV_WRITE|EV_CLOSED|EV_SIGNAL); /* See if there is a timeout that we should report */ if (tv != NULL && (flags & event & EV_TIMEOUT)) { struct timeval tmp = ev->ev_timeout; tmp.tv_usec &= MICROSECONDS_MASK; /* correctly remamp to real time */ evutil_timeradd(&ev->ev_base->tv_clock_diff, &tmp, tv); } EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); return (flags & event); } int event_initialized(const struct event *ev) { if (!(ev->ev_flags & EVLIST_INIT)) return 0; return 1; } void event_get_assignment(const struct event *event, struct event_base **base_out, evutil_socket_t *fd_out, short *events_out, event_callback_fn *callback_out, void **arg_out) { event_debug_assert_is_setup_(event); if (base_out) *base_out = event->ev_base; if (fd_out) *fd_out = event->ev_fd; if (events_out) *events_out = event->ev_events; if (callback_out) *callback_out = event->ev_callback; if (arg_out) *arg_out = event->ev_arg; } size_t event_get_struct_event_size(void) { return sizeof(struct event); } evutil_socket_t event_get_fd(const struct event *ev) { event_debug_assert_is_setup_(ev); return ev->ev_fd; } struct event_base * event_get_base(const struct event *ev) { event_debug_assert_is_setup_(ev); return ev->ev_base; } short event_get_events(const struct event *ev) { event_debug_assert_is_setup_(ev); return ev->ev_events; } event_callback_fn event_get_callback(const struct event *ev) { event_debug_assert_is_setup_(ev); return ev->ev_callback; } void * event_get_callback_arg(const struct event *ev) { event_debug_assert_is_setup_(ev); return ev->ev_arg; } int event_get_priority(const struct event *ev) { event_debug_assert_is_setup_(ev); return ev->ev_pri; } int event_add(struct event *ev, const struct timeval *tv) { int res; if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { event_warnx("%s: event has no event_base set.", __func__); return -1; } EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); res = event_add_nolock_(ev, tv, 0); EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); return (res); } /* Helper callback: wake an event_base from another thread. This version * works by writing a byte to one end of a socketpair, so that the event_base * listening on the other end will wake up as the corresponding event * triggers */ static int evthread_notify_base_default(struct event_base *base) { char buf[1]; int r; buf[0] = (char) 0; #ifdef _WIN32 r = send(base->th_notify_fd[1], buf, 1, 0); #else r = write(base->th_notify_fd[1], buf, 1); #endif return (r < 0 && ! EVUTIL_ERR_IS_EAGAIN(errno)) ? -1 : 0; } #ifdef EVENT__HAVE_EVENTFD /* Helper callback: wake an event_base from another thread. This version * assumes that you have a working eventfd() implementation. */ static int evthread_notify_base_eventfd(struct event_base *base) { ev_uint64_t msg = 1; int r; do { r = write(base->th_notify_fd[0], (void*) &msg, sizeof(msg)); } while (r < 0 && errno == EAGAIN); return (r < 0) ? -1 : 0; } #endif /** Tell the thread currently running the event_loop for base (if any) that it * needs to stop waiting in its dispatch function (if it is) and process all * active callbacks. */ static int evthread_notify_base(struct event_base *base) { EVENT_BASE_ASSERT_LOCKED(base); if (!base->th_notify_fn) return -1; if (base->is_notify_pending) return 0; base->is_notify_pending = 1; return base->th_notify_fn(base); } /* Implementation function to remove a timeout on a currently pending event. */ int event_remove_timer_nolock_(struct event *ev) { struct event_base *base = ev->ev_base; EVENT_BASE_ASSERT_LOCKED(base); event_debug_assert_is_setup_(ev); event_debug(("event_remove_timer_nolock: event: %p", ev)); /* If it's not pending on a timeout, we don't need to do anything. */ if (ev->ev_flags & EVLIST_TIMEOUT) { event_queue_remove_timeout(base, ev); evutil_timerclear(&ev->ev_.ev_io.ev_timeout); } return (0); } int event_remove_timer(struct event *ev) { int res; if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { event_warnx("%s: event has no event_base set.", __func__); return -1; } EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); res = event_remove_timer_nolock_(ev); EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); return (res); } /* Implementation function to add an event. Works just like event_add, * except: 1) it requires that we have the lock. 2) if tv_is_absolute is set, * we treat tv as an absolute time, not as an interval to add to the current * time */ int event_add_nolock_(struct event *ev, const struct timeval *tv, int tv_is_absolute) { struct event_base *base = ev->ev_base; int res = 0; int notify = 0; EVENT_BASE_ASSERT_LOCKED(base); event_debug_assert_is_setup_(ev); event_debug(( "event_add: event: %p (fd "EV_SOCK_FMT"), %s%s%s%scall %p", ev, EV_SOCK_ARG(ev->ev_fd), ev->ev_events & EV_READ ? "EV_READ " : " ", ev->ev_events & EV_WRITE ? "EV_WRITE " : " ", ev->ev_events & EV_CLOSED ? "EV_CLOSED " : " ", tv ? "EV_TIMEOUT " : " ", ev->ev_callback)); EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL)); if (ev->ev_flags & EVLIST_FINALIZING) { /* XXXX debug */ return (-1); } /* * prepare for timeout insertion further below, if we get a * failure on any step, we should not change any state. */ if (tv != NULL && !(ev->ev_flags & EVLIST_TIMEOUT)) { if (min_heap_reserve_(&base->timeheap, 1 + min_heap_size_(&base->timeheap)) == -1) return (-1); /* ENOMEM == errno */ } /* If the main thread is currently executing a signal event's * callback, and we are not the main thread, then we want to wait * until the callback is done before we mess with the event, or else * we can race on ev_ncalls and ev_pncalls below. */ #ifndef EVENT__DISABLE_THREAD_SUPPORT if (base->current_event == event_to_event_callback(ev) && (ev->ev_events & EV_SIGNAL) && !EVBASE_IN_THREAD(base)) { ++base->current_event_waiters; EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); } #endif if ((ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED|EV_SIGNAL)) && !(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))) { if (ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED)) res = evmap_io_add_(base, ev->ev_fd, ev); else if (ev->ev_events & EV_SIGNAL) res = evmap_signal_add_(base, (int)ev->ev_fd, ev); if (res != -1) event_queue_insert_inserted(base, ev); if (res == 1) { /* evmap says we need to notify the main thread. */ notify = 1; res = 0; } } /* * we should change the timeout state only if the previous event * addition succeeded. */ if (res != -1 && tv != NULL) { struct timeval now; int common_timeout; #ifdef USE_REINSERT_TIMEOUT int was_common; int old_timeout_idx; #endif /* * for persistent timeout events, we remember the * timeout value and re-add the event. * * If tv_is_absolute, this was already set. */ if (ev->ev_closure == EV_CLOSURE_EVENT_PERSIST && !tv_is_absolute) ev->ev_io_timeout = *tv; #ifndef USE_REINSERT_TIMEOUT if (ev->ev_flags & EVLIST_TIMEOUT) { event_queue_remove_timeout(base, ev); } #endif /* Check if it is active due to a timeout. Rescheduling * this timeout before the callback can be executed * removes it from the active list. */ if ((ev->ev_flags & EVLIST_ACTIVE) && (ev->ev_res & EV_TIMEOUT)) { if (ev->ev_events & EV_SIGNAL) { /* See if we are just active executing * this event in a loop */ if (ev->ev_ncalls && ev->ev_pncalls) { /* Abort loop */ *ev->ev_pncalls = 0; } } event_queue_remove_active(base, event_to_event_callback(ev)); } gettime(base, &now); common_timeout = is_common_timeout(tv, base); #ifdef USE_REINSERT_TIMEOUT was_common = is_common_timeout(&ev->ev_timeout, base); old_timeout_idx = COMMON_TIMEOUT_IDX(&ev->ev_timeout); #endif if (tv_is_absolute) { ev->ev_timeout = *tv; } else if (common_timeout) { struct timeval tmp = *tv; tmp.tv_usec &= MICROSECONDS_MASK; evutil_timeradd(&now, &tmp, &ev->ev_timeout); ev->ev_timeout.tv_usec |= (tv->tv_usec & ~MICROSECONDS_MASK); } else { evutil_timeradd(&now, tv, &ev->ev_timeout); } event_debug(( "event_add: event %p, timeout in %d seconds %d useconds, call %p", ev, (int)tv->tv_sec, (int)tv->tv_usec, ev->ev_callback)); #ifdef USE_REINSERT_TIMEOUT event_queue_reinsert_timeout(base, ev, was_common, common_timeout, old_timeout_idx); #else event_queue_insert_timeout(base, ev); #endif if (common_timeout) { struct common_timeout_list *ctl = get_common_timeout_list(base, &ev->ev_timeout); if (ev == TAILQ_FIRST(&ctl->events)) { common_timeout_schedule(ctl, &now, ev); } } else { struct event* top = NULL; /* See if the earliest timeout is now earlier than it * was before: if so, we will need to tell the main * thread to wake up earlier than it would otherwise. * We double check the timeout of the top element to * handle time distortions due to system suspension. */ if (min_heap_elt_is_top_(ev)) notify = 1; else if ((top = min_heap_top_(&base->timeheap)) != NULL && evutil_timercmp(&top->ev_timeout, &now, <)) notify = 1; } } /* if we are not in the right thread, we need to wake up the loop */ if (res != -1 && notify && EVBASE_NEED_NOTIFY(base)) evthread_notify_base(base); event_debug_note_add_(ev); return (res); } static int event_del_(struct event *ev, int blocking) { int res; struct event_base *base = ev->ev_base; if (EVUTIL_FAILURE_CHECK(!base)) { event_warnx("%s: event has no event_base set.", __func__); return -1; } EVBASE_ACQUIRE_LOCK(base, th_base_lock); res = event_del_nolock_(ev, blocking); EVBASE_RELEASE_LOCK(base, th_base_lock); return (res); } int event_del(struct event *ev) { return event_del_(ev, EVENT_DEL_AUTOBLOCK); } int event_del_block(struct event *ev) { return event_del_(ev, EVENT_DEL_BLOCK); } int event_del_noblock(struct event *ev) { return event_del_(ev, EVENT_DEL_NOBLOCK); } /** Helper for event_del: always called with th_base_lock held. * * "blocking" must be one of the EVENT_DEL_{BLOCK, NOBLOCK, AUTOBLOCK, * EVEN_IF_FINALIZING} values. See those for more information. */ int event_del_nolock_(struct event *ev, int blocking) { struct event_base *base; int res = 0, notify = 0; event_debug(("event_del: %p (fd "EV_SOCK_FMT"), callback %p", ev, EV_SOCK_ARG(ev->ev_fd), ev->ev_callback)); /* An event without a base has not been added */ if (ev->ev_base == NULL) return (-1); EVENT_BASE_ASSERT_LOCKED(ev->ev_base); if (blocking != EVENT_DEL_EVEN_IF_FINALIZING) { if (ev->ev_flags & EVLIST_FINALIZING) { /* XXXX Debug */ return 0; } } base = ev->ev_base; EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL)); /* See if we are just active executing this event in a loop */ if (ev->ev_events & EV_SIGNAL) { if (ev->ev_ncalls && ev->ev_pncalls) { /* Abort loop */ *ev->ev_pncalls = 0; } } if (ev->ev_flags & EVLIST_TIMEOUT) { /* NOTE: We never need to notify the main thread because of a * deleted timeout event: all that could happen if we don't is * that the dispatch loop might wake up too early. But the * point of notifying the main thread _is_ to wake up the * dispatch loop early anyway, so we wouldn't gain anything by * doing it. */ event_queue_remove_timeout(base, ev); } if (ev->ev_flags & EVLIST_ACTIVE) event_queue_remove_active(base, event_to_event_callback(ev)); else if (ev->ev_flags & EVLIST_ACTIVE_LATER) event_queue_remove_active_later(base, event_to_event_callback(ev)); if (ev->ev_flags & EVLIST_INSERTED) { event_queue_remove_inserted(base, ev); if (ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED)) res = evmap_io_del_(base, ev->ev_fd, ev); else res = evmap_signal_del_(base, (int)ev->ev_fd, ev); if (res == 1) { /* evmap says we need to notify the main thread. */ notify = 1; res = 0; } /* If we do not have events, let's notify event base so it can * exit without waiting */ if (!event_haveevents(base) && !N_ACTIVE_CALLBACKS(base)) notify = 1; } /* if we are not in the right thread, we need to wake up the loop */ if (res != -1 && notify && EVBASE_NEED_NOTIFY(base)) evthread_notify_base(base); event_debug_note_del_(ev); /* If the main thread is currently executing this event's callback, * and we are not the main thread, then we want to wait until the * callback is done before returning. That way, when this function * returns, it will be safe to free the user-supplied argument. */ #ifndef EVENT__DISABLE_THREAD_SUPPORT if (blocking != EVENT_DEL_NOBLOCK && base->current_event == event_to_event_callback(ev) && !EVBASE_IN_THREAD(base) && (blocking == EVENT_DEL_BLOCK || !(ev->ev_events & EV_FINALIZE))) { ++base->current_event_waiters; EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); } #endif return (res); } void event_active(struct event *ev, int res, short ncalls) { if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { event_warnx("%s: event has no event_base set.", __func__); return; } EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); event_debug_assert_is_setup_(ev); event_active_nolock_(ev, res, ncalls); EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); } void event_active_nolock_(struct event *ev, int res, short ncalls) { struct event_base *base; event_debug(("event_active: %p (fd "EV_SOCK_FMT"), res %d, callback %p", ev, EV_SOCK_ARG(ev->ev_fd), (int)res, ev->ev_callback)); base = ev->ev_base; EVENT_BASE_ASSERT_LOCKED(base); if (ev->ev_flags & EVLIST_FINALIZING) { /* XXXX debug */ return; } switch ((ev->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))) { default: case EVLIST_ACTIVE|EVLIST_ACTIVE_LATER: EVUTIL_ASSERT(0); break; case EVLIST_ACTIVE: /* We get different kinds of events, add them together */ ev->ev_res |= res; return; case EVLIST_ACTIVE_LATER: ev->ev_res |= res; break; case 0: ev->ev_res = res; break; } if (ev->ev_pri < base->event_running_priority) base->event_continue = 1; if (ev->ev_events & EV_SIGNAL) { #ifndef EVENT__DISABLE_THREAD_SUPPORT if (base->current_event == event_to_event_callback(ev) && !EVBASE_IN_THREAD(base)) { ++base->current_event_waiters; EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); } #endif ev->ev_ncalls = ncalls; ev->ev_pncalls = NULL; } event_callback_activate_nolock_(base, event_to_event_callback(ev)); } void event_active_later_(struct event *ev, int res) { EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); event_active_later_nolock_(ev, res); EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); } void event_active_later_nolock_(struct event *ev, int res) { struct event_base *base = ev->ev_base; EVENT_BASE_ASSERT_LOCKED(base); if (ev->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) { /* We get different kinds of events, add them together */ ev->ev_res |= res; return; } ev->ev_res = res; event_callback_activate_later_nolock_(base, event_to_event_callback(ev)); } int event_callback_activate_(struct event_base *base, struct event_callback *evcb) { int r; EVBASE_ACQUIRE_LOCK(base, th_base_lock); r = event_callback_activate_nolock_(base, evcb); EVBASE_RELEASE_LOCK(base, th_base_lock); return r; } int event_callback_activate_nolock_(struct event_base *base, struct event_callback *evcb) { int r = 1; if (evcb->evcb_flags & EVLIST_FINALIZING) return 0; switch (evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) { default: EVUTIL_ASSERT(0); EVUTIL_FALLTHROUGH; case EVLIST_ACTIVE_LATER: event_queue_remove_active_later(base, evcb); r = 0; break; case EVLIST_ACTIVE: return 0; case 0: break; } event_queue_insert_active(base, evcb); if (EVBASE_NEED_NOTIFY(base)) evthread_notify_base(base); return r; } int event_callback_activate_later_nolock_(struct event_base *base, struct event_callback *evcb) { if (evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) return 0; event_queue_insert_active_later(base, evcb); if (EVBASE_NEED_NOTIFY(base)) evthread_notify_base(base); return 1; } void event_callback_init_(struct event_base *base, struct event_callback *cb) { memset(cb, 0, sizeof(*cb)); cb->evcb_pri = base->nactivequeues - 1; } int event_callback_cancel_(struct event_base *base, struct event_callback *evcb) { int r; EVBASE_ACQUIRE_LOCK(base, th_base_lock); r = event_callback_cancel_nolock_(base, evcb, 0); EVBASE_RELEASE_LOCK(base, th_base_lock); return r; } int event_callback_cancel_nolock_(struct event_base *base, struct event_callback *evcb, int even_if_finalizing) { if ((evcb->evcb_flags & EVLIST_FINALIZING) && !even_if_finalizing) return 0; if (evcb->evcb_flags & EVLIST_INIT) return event_del_nolock_(event_callback_to_event(evcb), even_if_finalizing ? EVENT_DEL_EVEN_IF_FINALIZING : EVENT_DEL_AUTOBLOCK); switch ((evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))) { default: case EVLIST_ACTIVE|EVLIST_ACTIVE_LATER: EVUTIL_ASSERT(0); break; case EVLIST_ACTIVE: /* We get different kinds of events, add them together */ event_queue_remove_active(base, evcb); return 0; case EVLIST_ACTIVE_LATER: event_queue_remove_active_later(base, evcb); break; case 0: break; } return 0; } void event_deferred_cb_init_(struct event_callback *cb, ev_uint8_t priority, deferred_cb_fn fn, void *arg) { memset(cb, 0, sizeof(*cb)); cb->evcb_cb_union.evcb_selfcb = fn; cb->evcb_arg = arg; cb->evcb_pri = priority; cb->evcb_closure = EV_CLOSURE_CB_SELF; } void event_deferred_cb_set_priority_(struct event_callback *cb, ev_uint8_t priority) { cb->evcb_pri = priority; } void event_deferred_cb_cancel_(struct event_base *base, struct event_callback *cb) { if (!base) base = current_base; event_callback_cancel_(base, cb); } #define MAX_DEFERREDS_QUEUED 32 int event_deferred_cb_schedule_(struct event_base *base, struct event_callback *cb) { int r = 1; if (!base) base = current_base; EVBASE_ACQUIRE_LOCK(base, th_base_lock); if (base->n_deferreds_queued > MAX_DEFERREDS_QUEUED) { r = event_callback_activate_later_nolock_(base, cb); } else { r = event_callback_activate_nolock_(base, cb); if (r) { ++base->n_deferreds_queued; } } EVBASE_RELEASE_LOCK(base, th_base_lock); return r; } static int timeout_next(struct event_base *base, struct timeval **tv_p) { /* Caller must hold th_base_lock */ struct timeval now; struct event *ev; struct timeval *tv = *tv_p; int res = 0; ev = min_heap_top_(&base->timeheap); if (ev == NULL) { /* if no time-based events are active wait for I/O */ *tv_p = NULL; goto out; } if (gettime(base, &now) == -1) { res = -1; goto out; } if (evutil_timercmp(&ev->ev_timeout, &now, <=)) { evutil_timerclear(tv); goto out; } evutil_timersub(&ev->ev_timeout, &now, tv); EVUTIL_ASSERT(tv->tv_sec >= 0); EVUTIL_ASSERT(tv->tv_usec >= 0); event_debug(("timeout_next: event: %p, in %d seconds, %d useconds", ev, (int)tv->tv_sec, (int)tv->tv_usec)); out: return (res); } /* Activate every event whose timeout has elapsed. */ static void timeout_process(struct event_base *base) { /* Caller must hold lock. */ struct timeval now; struct event *ev; if (min_heap_empty_(&base->timeheap)) { return; } gettime(base, &now); while ((ev = min_heap_top_(&base->timeheap))) { if (evutil_timercmp(&ev->ev_timeout, &now, >)) break; /* delete this event from the I/O queues */ event_del_nolock_(ev, EVENT_DEL_NOBLOCK); event_debug(("timeout_process: event: %p, call %p", ev, ev->ev_callback)); event_active_nolock_(ev, EV_TIMEOUT, 1); } } #ifndef MAX #define MAX(a,b) (((a)>(b))?(a):(b)) #endif #define MAX_EVENT_COUNT(var, v) var = MAX(var, v) /* These are a fancy way to spell if (~flags & EVLIST_INTERNAL) base->event_count--/++; */ #define DECR_EVENT_COUNT(base,flags) \ ((base)->event_count -= !((flags) & EVLIST_INTERNAL)) #define INCR_EVENT_COUNT(base,flags) do { \ ((base)->event_count += !((flags) & EVLIST_INTERNAL)); \ MAX_EVENT_COUNT((base)->event_count_max, (base)->event_count); \ } while (0) static void event_queue_remove_inserted(struct event_base *base, struct event *ev) { EVENT_BASE_ASSERT_LOCKED(base); if (EVUTIL_FAILURE_CHECK(!(ev->ev_flags & EVLIST_INSERTED))) { event_errx(1, "%s: %p(fd "EV_SOCK_FMT") not on queue %x", __func__, ev, EV_SOCK_ARG(ev->ev_fd), EVLIST_INSERTED); return; } DECR_EVENT_COUNT(base, ev->ev_flags); ev->ev_flags &= ~EVLIST_INSERTED; } static void event_queue_remove_active(struct event_base *base, struct event_callback *evcb) { EVENT_BASE_ASSERT_LOCKED(base); if (EVUTIL_FAILURE_CHECK(!(evcb->evcb_flags & EVLIST_ACTIVE))) { event_errx(1, "%s: %p not on queue %x", __func__, evcb, EVLIST_ACTIVE); return; } DECR_EVENT_COUNT(base, evcb->evcb_flags); evcb->evcb_flags &= ~EVLIST_ACTIVE; base->event_count_active--; TAILQ_REMOVE(&base->activequeues[evcb->evcb_pri], evcb, evcb_active_next); } static void event_queue_remove_active_later(struct event_base *base, struct event_callback *evcb) { EVENT_BASE_ASSERT_LOCKED(base); if (EVUTIL_FAILURE_CHECK(!(evcb->evcb_flags & EVLIST_ACTIVE_LATER))) { event_errx(1, "%s: %p not on queue %x", __func__, evcb, EVLIST_ACTIVE_LATER); return; } DECR_EVENT_COUNT(base, evcb->evcb_flags); evcb->evcb_flags &= ~EVLIST_ACTIVE_LATER; base->event_count_active--; TAILQ_REMOVE(&base->active_later_queue, evcb, evcb_active_next); } static void event_queue_remove_timeout(struct event_base *base, struct event *ev) { EVENT_BASE_ASSERT_LOCKED(base); if (EVUTIL_FAILURE_CHECK(!(ev->ev_flags & EVLIST_TIMEOUT))) { event_errx(1, "%s: %p(fd "EV_SOCK_FMT") not on queue %x", __func__, ev, EV_SOCK_ARG(ev->ev_fd), EVLIST_TIMEOUT); return; } DECR_EVENT_COUNT(base, ev->ev_flags); ev->ev_flags &= ~EVLIST_TIMEOUT; if (is_common_timeout(&ev->ev_timeout, base)) { struct common_timeout_list *ctl = get_common_timeout_list(base, &ev->ev_timeout); TAILQ_REMOVE(&ctl->events, ev, ev_timeout_pos.ev_next_with_common_timeout); } else { min_heap_erase_(&base->timeheap, ev); } } #ifdef USE_REINSERT_TIMEOUT /* Remove and reinsert 'ev' into the timeout queue. */ static void event_queue_reinsert_timeout(struct event_base *base, struct event *ev, int was_common, int is_common, int old_timeout_idx) { struct common_timeout_list *ctl; if (!(ev->ev_flags & EVLIST_TIMEOUT)) { event_queue_insert_timeout(base, ev); return; } switch ((was_common<<1) | is_common) { case 3: /* Changing from one common timeout to another */ ctl = base->common_timeout_queues[old_timeout_idx]; TAILQ_REMOVE(&ctl->events, ev, ev_timeout_pos.ev_next_with_common_timeout); ctl = get_common_timeout_list(base, &ev->ev_timeout); insert_common_timeout_inorder(ctl, ev); break; case 2: /* Was common; is no longer common */ ctl = base->common_timeout_queues[old_timeout_idx]; TAILQ_REMOVE(&ctl->events, ev, ev_timeout_pos.ev_next_with_common_timeout); min_heap_push_(&base->timeheap, ev); break; case 1: /* Wasn't common; has become common. */ min_heap_erase_(&base->timeheap, ev); ctl = get_common_timeout_list(base, &ev->ev_timeout); insert_common_timeout_inorder(ctl, ev); break; case 0: /* was in heap; is still on heap. */ min_heap_adjust_(&base->timeheap, ev); break; default: EVUTIL_ASSERT(0); /* unreachable */ break; } } #endif /* Add 'ev' to the common timeout list in 'ev'. */ static void insert_common_timeout_inorder(struct common_timeout_list *ctl, struct event *ev) { struct event *e; /* By all logic, we should just be able to append 'ev' to the end of * ctl->events, since the timeout on each 'ev' is set to {the common * timeout} + {the time when we add the event}, and so the events * should arrive in order of their timeeouts. But just in case * there's some wacky threading issue going on, we do a search from * the end of 'ev' to find the right insertion point. */ TAILQ_FOREACH_REVERSE(e, &ctl->events, event_list, ev_timeout_pos.ev_next_with_common_timeout) { /* This timercmp is a little sneaky, since both ev and e have * magic values in tv_usec. Fortunately, they ought to have * the _same_ magic values in tv_usec. Let's assert for that. */ EVUTIL_ASSERT( is_same_common_timeout(&e->ev_timeout, &ev->ev_timeout)); if (evutil_timercmp(&ev->ev_timeout, &e->ev_timeout, >=)) { TAILQ_INSERT_AFTER(&ctl->events, e, ev, ev_timeout_pos.ev_next_with_common_timeout); return; } } TAILQ_INSERT_HEAD(&ctl->events, ev, ev_timeout_pos.ev_next_with_common_timeout); } static void event_queue_insert_inserted(struct event_base *base, struct event *ev) { EVENT_BASE_ASSERT_LOCKED(base); if (EVUTIL_FAILURE_CHECK(ev->ev_flags & EVLIST_INSERTED)) { event_errx(1, "%s: %p(fd "EV_SOCK_FMT") already inserted", __func__, ev, EV_SOCK_ARG(ev->ev_fd)); return; } INCR_EVENT_COUNT(base, ev->ev_flags); ev->ev_flags |= EVLIST_INSERTED; } static void event_queue_insert_active(struct event_base *base, struct event_callback *evcb) { EVENT_BASE_ASSERT_LOCKED(base); if (evcb->evcb_flags & EVLIST_ACTIVE) { /* Double insertion is possible for active events */ return; } INCR_EVENT_COUNT(base, evcb->evcb_flags); evcb->evcb_flags |= EVLIST_ACTIVE; base->event_count_active++; MAX_EVENT_COUNT(base->event_count_active_max, base->event_count_active); EVUTIL_ASSERT(evcb->evcb_pri < base->nactivequeues); TAILQ_INSERT_TAIL(&base->activequeues[evcb->evcb_pri], evcb, evcb_active_next); } static void event_queue_insert_active_later(struct event_base *base, struct event_callback *evcb) { EVENT_BASE_ASSERT_LOCKED(base); if (evcb->evcb_flags & (EVLIST_ACTIVE_LATER|EVLIST_ACTIVE)) { /* Double insertion is possible */ return; } INCR_EVENT_COUNT(base, evcb->evcb_flags); evcb->evcb_flags |= EVLIST_ACTIVE_LATER; base->event_count_active++; MAX_EVENT_COUNT(base->event_count_active_max, base->event_count_active); EVUTIL_ASSERT(evcb->evcb_pri < base->nactivequeues); TAILQ_INSERT_TAIL(&base->active_later_queue, evcb, evcb_active_next); } static void event_queue_insert_timeout(struct event_base *base, struct event *ev) { EVENT_BASE_ASSERT_LOCKED(base); if (EVUTIL_FAILURE_CHECK(ev->ev_flags & EVLIST_TIMEOUT)) { event_errx(1, "%s: %p(fd "EV_SOCK_FMT") already on timeout", __func__, ev, EV_SOCK_ARG(ev->ev_fd)); return; } INCR_EVENT_COUNT(base, ev->ev_flags); ev->ev_flags |= EVLIST_TIMEOUT; if (is_common_timeout(&ev->ev_timeout, base)) { struct common_timeout_list *ctl = get_common_timeout_list(base, &ev->ev_timeout); insert_common_timeout_inorder(ctl, ev); } else { min_heap_push_(&base->timeheap, ev); } } static void event_queue_make_later_events_active(struct event_base *base) { struct event_callback *evcb; EVENT_BASE_ASSERT_LOCKED(base); while ((evcb = TAILQ_FIRST(&base->active_later_queue))) { TAILQ_REMOVE(&base->active_later_queue, evcb, evcb_active_next); evcb->evcb_flags = (evcb->evcb_flags & ~EVLIST_ACTIVE_LATER) | EVLIST_ACTIVE; EVUTIL_ASSERT(evcb->evcb_pri < base->nactivequeues); TAILQ_INSERT_TAIL(&base->activequeues[evcb->evcb_pri], evcb, evcb_active_next); base->n_deferreds_queued += (evcb->evcb_closure == EV_CLOSURE_CB_SELF); } } /* Functions for debugging */ const char * event_get_version(void) { return (EVENT__VERSION); } ev_uint32_t event_get_version_number(void) { return (EVENT__NUMERIC_VERSION); } /* * No thread-safe interface needed - the information should be the same * for all threads. */ const char * event_get_method(void) { return (current_base->evsel->name); } #ifndef EVENT__DISABLE_MM_REPLACEMENT static void *(*mm_malloc_fn_)(size_t sz) = NULL; static void *(*mm_realloc_fn_)(void *p, size_t sz) = NULL; static void (*mm_free_fn_)(void *p) = NULL; void * event_mm_malloc_(size_t sz) { if (sz == 0) return NULL; if (mm_malloc_fn_) return mm_malloc_fn_(sz); else return malloc(sz); } void * event_mm_calloc_(size_t count, size_t size) { if (count == 0 || size == 0) return NULL; if (mm_malloc_fn_) { size_t sz = count * size; void *p = NULL; if (count > EV_SIZE_MAX / size) goto error; p = mm_malloc_fn_(sz); if (p) return memset(p, 0, sz); } else { void *p = calloc(count, size); #ifdef _WIN32 /* Windows calloc doesn't reliably set ENOMEM */ if (p == NULL) goto error; #endif return p; } error: errno = ENOMEM; return NULL; } char * event_mm_strdup_(const char *str) { if (!str) { errno = EINVAL; return NULL; } if (mm_malloc_fn_) { size_t ln = strlen(str); void *p = NULL; if (ln == EV_SIZE_MAX) goto error; p = mm_malloc_fn_(ln+1); if (p) return memcpy(p, str, ln+1); } else #ifdef _WIN32 return _strdup(str); #else return strdup(str); #endif error: errno = ENOMEM; return NULL; } void * event_mm_realloc_(void *ptr, size_t sz) { if (mm_realloc_fn_) return mm_realloc_fn_(ptr, sz); else return realloc(ptr, sz); } void event_mm_free_(void *ptr) { if (mm_free_fn_) mm_free_fn_(ptr); else free(ptr); } void event_set_mem_functions(void *(*malloc_fn)(size_t sz), void *(*realloc_fn)(void *ptr, size_t sz), void (*free_fn)(void *ptr)) { mm_malloc_fn_ = malloc_fn; mm_realloc_fn_ = realloc_fn; mm_free_fn_ = free_fn; } #endif #ifdef EVENT__HAVE_EVENTFD static void evthread_notify_drain_eventfd(evutil_socket_t fd, short what, void *arg) { ev_uint64_t msg; ev_ssize_t r; struct event_base *base = arg; r = read(fd, (void*) &msg, sizeof(msg)); if (r<0 && errno != EAGAIN) { event_sock_warn(fd, "Error reading from eventfd"); } EVBASE_ACQUIRE_LOCK(base, th_base_lock); base->is_notify_pending = 0; EVBASE_RELEASE_LOCK(base, th_base_lock); } #endif static void evthread_notify_drain_default(evutil_socket_t fd, short what, void *arg) { unsigned char buf[1024]; struct event_base *base = arg; #ifdef _WIN32 while (recv(fd, (char*)buf, sizeof(buf), 0) > 0) ; #else while (read(fd, (char*)buf, sizeof(buf)) > 0) ; #endif EVBASE_ACQUIRE_LOCK(base, th_base_lock); base->is_notify_pending = 0; EVBASE_RELEASE_LOCK(base, th_base_lock); } int evthread_make_base_notifiable(struct event_base *base) { int r; if (!base) return -1; EVBASE_ACQUIRE_LOCK(base, th_base_lock); r = evthread_make_base_notifiable_nolock_(base); EVBASE_RELEASE_LOCK(base, th_base_lock); return r; } static int evthread_make_base_notifiable_nolock_(struct event_base *base) { void (*cb)(evutil_socket_t, short, void *); int (*notify)(struct event_base *); if (base->th_notify_fn != NULL) { /* The base is already notifiable: we're doing fine. */ return 0; } #if defined(EVENT__HAVE_WORKING_KQUEUE) if (base->evsel == &kqops && event_kq_add_notify_event_(base) == 0) { base->th_notify_fn = event_kq_notify_base_; /* No need to add an event here; the backend can wake * itself up just fine. */ return 0; } #endif #ifdef EVENT__HAVE_EVENTFD base->th_notify_fd[0] = evutil_eventfd_(0, EVUTIL_EFD_CLOEXEC|EVUTIL_EFD_NONBLOCK); if (base->th_notify_fd[0] >= 0) { base->th_notify_fd[1] = -1; notify = evthread_notify_base_eventfd; cb = evthread_notify_drain_eventfd; } else #endif if (evutil_make_internal_pipe_(base->th_notify_fd) == 0) { notify = evthread_notify_base_default; cb = evthread_notify_drain_default; } else { return -1; } base->th_notify_fn = notify; /* prepare an event that we can use for wakeup */ event_assign(&base->th_notify, base, base->th_notify_fd[0], EV_READ|EV_PERSIST, cb, base); /* we need to mark this as internal event */ base->th_notify.ev_flags |= EVLIST_INTERNAL; event_priority_set(&base->th_notify, 0); return event_add_nolock_(&base->th_notify, NULL, 0); } int event_base_foreach_event_nolock_(struct event_base *base, event_base_foreach_event_cb fn, void *arg) { int r, i; unsigned u; struct event *ev; /* Start out with all the EVLIST_INSERTED events. */ if ((r = evmap_foreach_event_(base, fn, arg))) return r; /* Okay, now we deal with those events that have timeouts and are in * the min-heap. */ for (u = 0; u < base->timeheap.n; ++u) { ev = base->timeheap.p[u]; if (ev->ev_flags & EVLIST_INSERTED) { /* we already processed this one */ continue; } if ((r = fn(base, ev, arg))) return r; } /* Now for the events in one of the timeout queues. * the min-heap. */ for (i = 0; i < base->n_common_timeouts; ++i) { struct common_timeout_list *ctl = base->common_timeout_queues[i]; TAILQ_FOREACH(ev, &ctl->events, ev_timeout_pos.ev_next_with_common_timeout) { if (ev->ev_flags & EVLIST_INSERTED) { /* we already processed this one */ continue; } if ((r = fn(base, ev, arg))) return r; } } /* Finally, we deal wit all the active events that we haven't touched * yet. */ for (i = 0; i < base->nactivequeues; ++i) { struct event_callback *evcb; TAILQ_FOREACH(evcb, &base->activequeues[i], evcb_active_next) { if ((evcb->evcb_flags & (EVLIST_INIT|EVLIST_INSERTED|EVLIST_TIMEOUT)) != EVLIST_INIT) { /* This isn't an event (evlist_init clear), or * we already processed it. (inserted or * timeout set */ continue; } ev = event_callback_to_event(evcb); if ((r = fn(base, ev, arg))) return r; } } return 0; } /* Helper for event_base_dump_events: called on each event in the event base; * dumps only the inserted events. */ static int dump_inserted_event_fn(const struct event_base *base, const struct event *e, void *arg) { FILE *output = arg; const char *gloss = (e->ev_events & EV_SIGNAL) ? "sig" : "fd "; if (! (e->ev_flags & (EVLIST_INSERTED|EVLIST_TIMEOUT))) return 0; fprintf(output, " %p [%s "EV_SOCK_FMT"]%s%s%s%s%s%s%s", e, gloss, EV_SOCK_ARG(e->ev_fd), (e->ev_events&EV_READ)?" Read":"", (e->ev_events&EV_WRITE)?" Write":"", (e->ev_events&EV_CLOSED)?" EOF":"", (e->ev_events&EV_SIGNAL)?" Signal":"", (e->ev_events&EV_PERSIST)?" Persist":"", (e->ev_events&EV_ET)?" ET":"", (e->ev_flags&EVLIST_INTERNAL)?" Internal":""); if (e->ev_flags & EVLIST_TIMEOUT) { struct timeval tv; tv.tv_sec = e->ev_timeout.tv_sec; tv.tv_usec = e->ev_timeout.tv_usec & MICROSECONDS_MASK; evutil_timeradd(&tv, &base->tv_clock_diff, &tv); fprintf(output, " Timeout=%ld.%06d", (long)tv.tv_sec, (int)(tv.tv_usec & MICROSECONDS_MASK)); } fputc('\n', output); return 0; } /* Helper for event_base_dump_events: called on each event in the event base; * dumps only the active events. */ static int dump_active_event_fn(const struct event_base *base, const struct event *e, void *arg) { FILE *output = arg; const char *gloss = (e->ev_events & EV_SIGNAL) ? "sig" : "fd "; if (! (e->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))) return 0; fprintf(output, " %p [%s "EV_SOCK_FMT", priority=%d]%s%s%s%s%s active%s%s\n", e, gloss, EV_SOCK_ARG(e->ev_fd), e->ev_pri, (e->ev_res&EV_READ)?" Read":"", (e->ev_res&EV_WRITE)?" Write":"", (e->ev_res&EV_CLOSED)?" EOF":"", (e->ev_res&EV_SIGNAL)?" Signal":"", (e->ev_res&EV_TIMEOUT)?" Timeout":"", (e->ev_flags&EVLIST_INTERNAL)?" [Internal]":"", (e->ev_flags&EVLIST_ACTIVE_LATER)?" [NextTime]":""); return 0; } int event_base_foreach_event(struct event_base *base, event_base_foreach_event_cb fn, void *arg) { int r; if ((!fn) || (!base)) { return -1; } EVBASE_ACQUIRE_LOCK(base, th_base_lock); r = event_base_foreach_event_nolock_(base, fn, arg); EVBASE_RELEASE_LOCK(base, th_base_lock); return r; } void event_base_dump_events(struct event_base *base, FILE *output) { EVBASE_ACQUIRE_LOCK(base, th_base_lock); fprintf(output, "Inserted events:\n"); event_base_foreach_event_nolock_(base, dump_inserted_event_fn, output); fprintf(output, "Active events:\n"); event_base_foreach_event_nolock_(base, dump_active_event_fn, output); EVBASE_RELEASE_LOCK(base, th_base_lock); } void event_base_active_by_fd(struct event_base *base, evutil_socket_t fd, short events) { EVBASE_ACQUIRE_LOCK(base, th_base_lock); /* Activate any non timer events */ if (!(events & EV_TIMEOUT)) { evmap_io_active_(base, fd, events & (EV_READ|EV_WRITE|EV_CLOSED)); } else { /* If we want to activate timer events, loop and activate each event with * the same fd in both the timeheap and common timeouts list */ int i; unsigned u; struct event *ev; for (u = 0; u < base->timeheap.n; ++u) { ev = base->timeheap.p[u]; if (ev->ev_fd == fd) { event_active_nolock_(ev, EV_TIMEOUT, 1); } } for (i = 0; i < base->n_common_timeouts; ++i) { struct common_timeout_list *ctl = base->common_timeout_queues[i]; TAILQ_FOREACH(ev, &ctl->events, ev_timeout_pos.ev_next_with_common_timeout) { if (ev->ev_fd == fd) { event_active_nolock_(ev, EV_TIMEOUT, 1); } } } } EVBASE_RELEASE_LOCK(base, th_base_lock); } void event_base_active_by_signal(struct event_base *base, int sig) { EVBASE_ACQUIRE_LOCK(base, th_base_lock); evmap_signal_active_(base, sig, 1); EVBASE_RELEASE_LOCK(base, th_base_lock); } void event_base_add_virtual_(struct event_base *base) { EVBASE_ACQUIRE_LOCK(base, th_base_lock); base->virtual_event_count++; MAX_EVENT_COUNT(base->virtual_event_count_max, base->virtual_event_count); EVBASE_RELEASE_LOCK(base, th_base_lock); } void event_base_del_virtual_(struct event_base *base) { EVBASE_ACQUIRE_LOCK(base, th_base_lock); EVUTIL_ASSERT(base->virtual_event_count > 0); base->virtual_event_count--; if (base->virtual_event_count == 0 && EVBASE_NEED_NOTIFY(base)) evthread_notify_base(base); EVBASE_RELEASE_LOCK(base, th_base_lock); } static void event_free_debug_globals_locks(void) { #ifndef EVENT__DISABLE_THREAD_SUPPORT #ifndef EVENT__DISABLE_DEBUG_MODE if (event_debug_map_lock_ != NULL) { EVTHREAD_FREE_LOCK(event_debug_map_lock_, 0); event_debug_map_lock_ = NULL; evthreadimpl_disable_lock_debugging_(); } #endif /* EVENT__DISABLE_DEBUG_MODE */ #endif /* EVENT__DISABLE_THREAD_SUPPORT */ return; } static void event_free_debug_globals(void) { event_free_debug_globals_locks(); } static void event_free_evsig_globals(void) { evsig_free_globals_(); } static void event_free_evutil_globals(void) { evutil_free_globals_(); } static void event_free_globals(void) { event_free_debug_globals(); event_free_evsig_globals(); event_free_evutil_globals(); } void libevent_global_shutdown(void) { event_disable_debug_mode(); event_free_globals(); } #ifndef EVENT__DISABLE_THREAD_SUPPORT int event_global_setup_locks_(const int enable_locks) { #ifndef EVENT__DISABLE_DEBUG_MODE EVTHREAD_SETUP_GLOBAL_LOCK(event_debug_map_lock_, 0); #endif if (evsig_global_setup_locks_(enable_locks) < 0) return -1; if (evutil_global_setup_locks_(enable_locks) < 0) return -1; if (evutil_secure_rng_global_setup_locks_(enable_locks) < 0) return -1; return 0; } #endif void event_base_assert_ok_(struct event_base *base) { EVBASE_ACQUIRE_LOCK(base, th_base_lock); event_base_assert_ok_nolock_(base); EVBASE_RELEASE_LOCK(base, th_base_lock); } void event_base_assert_ok_nolock_(struct event_base *base) { int i; int count; /* First do checks on the per-fd and per-signal lists */ evmap_check_integrity_(base); /* Check the heap property */ for (i = 1; i < (int)base->timeheap.n; ++i) { int parent = (i - 1) / 2; struct event *ev, *p_ev; ev = base->timeheap.p[i]; p_ev = base->timeheap.p[parent]; EVUTIL_ASSERT(ev->ev_flags & EVLIST_TIMEOUT); EVUTIL_ASSERT(evutil_timercmp(&p_ev->ev_timeout, &ev->ev_timeout, <=)); EVUTIL_ASSERT(ev->ev_timeout_pos.min_heap_idx == i); } /* Check that the common timeouts are fine */ for (i = 0; i < base->n_common_timeouts; ++i) { struct common_timeout_list *ctl = base->common_timeout_queues[i]; struct event *last=NULL, *ev; EVUTIL_ASSERT_TAILQ_OK(&ctl->events, event, ev_timeout_pos.ev_next_with_common_timeout); TAILQ_FOREACH(ev, &ctl->events, ev_timeout_pos.ev_next_with_common_timeout) { if (last) EVUTIL_ASSERT(evutil_timercmp(&last->ev_timeout, &ev->ev_timeout, <=)); EVUTIL_ASSERT(ev->ev_flags & EVLIST_TIMEOUT); EVUTIL_ASSERT(is_common_timeout(&ev->ev_timeout,base)); EVUTIL_ASSERT(COMMON_TIMEOUT_IDX(&ev->ev_timeout) == i); last = ev; } } /* Check the active queues. */ count = 0; for (i = 0; i < base->nactivequeues; ++i) { struct event_callback *evcb; EVUTIL_ASSERT_TAILQ_OK(&base->activequeues[i], event_callback, evcb_active_next); TAILQ_FOREACH(evcb, &base->activequeues[i], evcb_active_next) { EVUTIL_ASSERT((evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) == EVLIST_ACTIVE); EVUTIL_ASSERT(evcb->evcb_pri == i); ++count; } } { struct event_callback *evcb; TAILQ_FOREACH(evcb, &base->active_later_queue, evcb_active_next) { EVUTIL_ASSERT((evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) == EVLIST_ACTIVE_LATER); ++count; } } EVUTIL_ASSERT(count == base->event_count_active); }