/* Copyright (C) 2002-2020 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
. */
/* Implemented from the specification included in the Intel C++ Compiler
User Guide and Reference, version 9.0. */
#ifndef NO_WARN_X86_INTRINSICS
/* This header is distributed to simplify porting x86_64 code that
makes explicit use of Intel intrinsics to powerpc64le.
It is the user's responsibility to determine if the results are
acceptable and make additional changes as necessary.
Note that much code that uses Intel intrinsics can be rewritten in
standard C or GNU C extensions, which are more portable and better
optimized across multiple targets.
In the specific case of X86 MMX (__m64) intrinsics, the PowerPC
target does not support a native __vector_size__ (8) type. Instead
we typedef __m64 to a 64-bit unsigned long long, which is natively
supported in 64-bit mode. This works well for the _si64 and some
_pi32 operations, but starts to generate long sequences for _pi16
and _pi8 operations. For those cases it better (faster and
smaller code) to transfer __m64 data to the PowerPC vector 128-bit
unit, perform the operation, and then transfer the result back to
the __m64 type. This implies that the direct register move
instructions, introduced with power8, are available for efficient
implementation of these transfers.
Most MMX intrinsic operations can be performed efficiently as
C language 64-bit scalar operation or optimized to use the newer
128-bit SSE/Altivec operations. We recomend this for new
applications. */
#error "Please read comment above. Use -DNO_WARN_X86_INTRINSICS to disable this error."
#endif
#ifndef _MMINTRIN_H_INCLUDED
#define _MMINTRIN_H_INCLUDED
#include
/* The Intel API is flexible enough that we must allow aliasing with other
vector types, and their scalar components. */
typedef __attribute__ ((__aligned__ (8),
__may_alias__)) unsigned long long __m64;
typedef __attribute__ ((__aligned__ (8)))
union
{
__m64 as_m64;
char as_char[8];
signed char as_signed_char [8];
short as_short[4];
int as_int[2];
long long as_long_long;
float as_float[2];
double as_double;
} __m64_union;
/* Empty the multimedia state. */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_empty (void)
{
/* nothing to do on PowerPC. */
}
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_empty (void)
{
/* nothing to do on PowerPC. */
}
/* Convert I to a __m64 object. The integer is zero-extended to 64-bits. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi32_si64 (int __i)
{
return (__m64) (unsigned int) __i;
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_from_int (int __i)
{
return _mm_cvtsi32_si64 (__i);
}
/* Convert the lower 32 bits of the __m64 object into an integer. */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi64_si32 (__m64 __i)
{
return ((int) __i);
}
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_to_int (__m64 __i)
{
return _mm_cvtsi64_si32 (__i);
}
/* Convert I to a __m64 object. */
/* Intel intrinsic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_from_int64 (long long __i)
{
return (__m64) __i;
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi64_m64 (long long __i)
{
return (__m64) __i;
}
/* Microsoft intrinsic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi64x_si64 (long long __i)
{
return (__m64) __i;
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set_pi64x (long long __i)
{
return (__m64) __i;
}
/* Convert the __m64 object to a 64bit integer. */
/* Intel intrinsic. */
extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_to_int64 (__m64 __i)
{
return (long long)__i;
}
extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtm64_si64 (__m64 __i)
{
return (long long) __i;
}
/* Microsoft intrinsic. */
extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi64_si64x (__m64 __i)
{
return (long long) __i;
}
#ifdef _ARCH_PWR8
/* Pack the four 16-bit values from M1 into the lower four 8-bit values of
the result, and the four 16-bit values from M2 into the upper four 8-bit
values of the result, all with signed saturation. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_packs_pi16 (__m64 __m1, __m64 __m2)
{
__vector signed short __vm1;
__vector signed char __vresult;
__vm1 = (__vector signed short) (__vector unsigned long long)
#ifdef __LITTLE_ENDIAN__
{ __m1, __m2 };
#else
{ __m2, __m1 };
#endif
__vresult = vec_packs (__vm1, __vm1);
return (__m64) ((__vector long long) __vresult)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_packsswb (__m64 __m1, __m64 __m2)
{
return _mm_packs_pi16 (__m1, __m2);
}
/* Pack the two 32-bit values from M1 in to the lower two 16-bit values of
the result, and the two 32-bit values from M2 into the upper two 16-bit
values of the result, all with signed saturation. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_packs_pi32 (__m64 __m1, __m64 __m2)
{
__vector signed int __vm1;
__vector signed short __vresult;
__vm1 = (__vector signed int) (__vector unsigned long long)
#ifdef __LITTLE_ENDIAN__
{ __m1, __m2 };
#else
{ __m2, __m1 };
#endif
__vresult = vec_packs (__vm1, __vm1);
return (__m64) ((__vector long long) __vresult)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_packssdw (__m64 __m1, __m64 __m2)
{
return _mm_packs_pi32 (__m1, __m2);
}
/* Pack the four 16-bit values from M1 into the lower four 8-bit values of
the result, and the four 16-bit values from M2 into the upper four 8-bit
values of the result, all with unsigned saturation. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_packs_pu16 (__m64 __m1, __m64 __m2)
{
__vector unsigned char __r;
__vector signed short __vm1 = (__vector signed short) (__vector long long)
#ifdef __LITTLE_ENDIAN__
{ __m1, __m2 };
#else
{ __m2, __m1 };
#endif
const __vector signed short __zero = { 0 };
__vector __bool short __select = vec_cmplt (__vm1, __zero);
__r = vec_packs ((__vector unsigned short) __vm1, (__vector unsigned short) __vm1);
__vector __bool char __packsel = vec_pack (__select, __select);
__r = vec_sel (__r, (const __vector unsigned char) __zero, __packsel);
return (__m64) ((__vector long long) __r)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_packuswb (__m64 __m1, __m64 __m2)
{
return _mm_packs_pu16 (__m1, __m2);
}
#endif /* end ARCH_PWR8 */
/* Interleave the four 8-bit values from the high half of M1 with the four
8-bit values from the high half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpackhi_pi8 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR8
__vector unsigned char __a, __b, __c;
__a = (__vector unsigned char)vec_splats (__m1);
__b = (__vector unsigned char)vec_splats (__m2);
__c = vec_mergel (__a, __b);
return (__m64) ((__vector long long) __c)[1];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_char[0] = __mu1.as_char[4];
__res.as_char[1] = __mu2.as_char[4];
__res.as_char[2] = __mu1.as_char[5];
__res.as_char[3] = __mu2.as_char[5];
__res.as_char[4] = __mu1.as_char[6];
__res.as_char[5] = __mu2.as_char[6];
__res.as_char[6] = __mu1.as_char[7];
__res.as_char[7] = __mu2.as_char[7];
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpckhbw (__m64 __m1, __m64 __m2)
{
return _mm_unpackhi_pi8 (__m1, __m2);
}
/* Interleave the two 16-bit values from the high half of M1 with the two
16-bit values from the high half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpackhi_pi16 (__m64 __m1, __m64 __m2)
{
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_short[0] = __mu1.as_short[2];
__res.as_short[1] = __mu2.as_short[2];
__res.as_short[2] = __mu1.as_short[3];
__res.as_short[3] = __mu2.as_short[3];
return (__m64) __res.as_m64;
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpckhwd (__m64 __m1, __m64 __m2)
{
return _mm_unpackhi_pi16 (__m1, __m2);
}
/* Interleave the 32-bit value from the high half of M1 with the 32-bit
value from the high half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpackhi_pi32 (__m64 __m1, __m64 __m2)
{
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_int[0] = __mu1.as_int[1];
__res.as_int[1] = __mu2.as_int[1];
return (__m64) __res.as_m64;
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpckhdq (__m64 __m1, __m64 __m2)
{
return _mm_unpackhi_pi32 (__m1, __m2);
}
/* Interleave the four 8-bit values from the low half of M1 with the four
8-bit values from the low half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpacklo_pi8 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR8
__vector unsigned char __a, __b, __c;
__a = (__vector unsigned char)vec_splats (__m1);
__b = (__vector unsigned char)vec_splats (__m2);
__c = vec_mergel (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_char[0] = __mu1.as_char[0];
__res.as_char[1] = __mu2.as_char[0];
__res.as_char[2] = __mu1.as_char[1];
__res.as_char[3] = __mu2.as_char[1];
__res.as_char[4] = __mu1.as_char[2];
__res.as_char[5] = __mu2.as_char[2];
__res.as_char[6] = __mu1.as_char[3];
__res.as_char[7] = __mu2.as_char[3];
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpcklbw (__m64 __m1, __m64 __m2)
{
return _mm_unpacklo_pi8 (__m1, __m2);
}
/* Interleave the two 16-bit values from the low half of M1 with the two
16-bit values from the low half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpacklo_pi16 (__m64 __m1, __m64 __m2)
{
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_short[0] = __mu1.as_short[0];
__res.as_short[1] = __mu2.as_short[0];
__res.as_short[2] = __mu1.as_short[1];
__res.as_short[3] = __mu2.as_short[1];
return (__m64) __res.as_m64;
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpcklwd (__m64 __m1, __m64 __m2)
{
return _mm_unpacklo_pi16 (__m1, __m2);
}
/* Interleave the 32-bit value from the low half of M1 with the 32-bit
value from the low half of M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpacklo_pi32 (__m64 __m1, __m64 __m2)
{
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_int[0] = __mu1.as_int[0];
__res.as_int[1] = __mu2.as_int[0];
return (__m64) __res.as_m64;
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_punpckldq (__m64 __m1, __m64 __m2)
{
return _mm_unpacklo_pi32 (__m1, __m2);
}
/* Add the 8-bit values in M1 to the 8-bit values in M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_add_pi8 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR8
__vector signed char __a, __b, __c;
__a = (__vector signed char)vec_splats (__m1);
__b = (__vector signed char)vec_splats (__m2);
__c = vec_add (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_char[0] = __mu1.as_char[0] + __mu2.as_char[0];
__res.as_char[1] = __mu1.as_char[1] + __mu2.as_char[1];
__res.as_char[2] = __mu1.as_char[2] + __mu2.as_char[2];
__res.as_char[3] = __mu1.as_char[3] + __mu2.as_char[3];
__res.as_char[4] = __mu1.as_char[4] + __mu2.as_char[4];
__res.as_char[5] = __mu1.as_char[5] + __mu2.as_char[5];
__res.as_char[6] = __mu1.as_char[6] + __mu2.as_char[6];
__res.as_char[7] = __mu1.as_char[7] + __mu2.as_char[7];
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddb (__m64 __m1, __m64 __m2)
{
return _mm_add_pi8 (__m1, __m2);
}
/* Add the 16-bit values in M1 to the 16-bit values in M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_add_pi16 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR8
__vector signed short __a, __b, __c;
__a = (__vector signed short)vec_splats (__m1);
__b = (__vector signed short)vec_splats (__m2);
__c = vec_add (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_short[0] = __mu1.as_short[0] + __mu2.as_short[0];
__res.as_short[1] = __mu1.as_short[1] + __mu2.as_short[1];
__res.as_short[2] = __mu1.as_short[2] + __mu2.as_short[2];
__res.as_short[3] = __mu1.as_short[3] + __mu2.as_short[3];
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddw (__m64 __m1, __m64 __m2)
{
return _mm_add_pi16 (__m1, __m2);
}
/* Add the 32-bit values in M1 to the 32-bit values in M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_add_pi32 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR9
__vector signed int __a, __b, __c;
__a = (__vector signed int)vec_splats (__m1);
__b = (__vector signed int)vec_splats (__m2);
__c = vec_add (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_int[0] = __mu1.as_int[0] + __mu2.as_int[0];
__res.as_int[1] = __mu1.as_int[1] + __mu2.as_int[1];
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddd (__m64 __m1, __m64 __m2)
{
return _mm_add_pi32 (__m1, __m2);
}
/* Subtract the 8-bit values in M2 from the 8-bit values in M1. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sub_pi8 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR8
__vector signed char __a, __b, __c;
__a = (__vector signed char)vec_splats (__m1);
__b = (__vector signed char)vec_splats (__m2);
__c = vec_sub (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_char[0] = __mu1.as_char[0] - __mu2.as_char[0];
__res.as_char[1] = __mu1.as_char[1] - __mu2.as_char[1];
__res.as_char[2] = __mu1.as_char[2] - __mu2.as_char[2];
__res.as_char[3] = __mu1.as_char[3] - __mu2.as_char[3];
__res.as_char[4] = __mu1.as_char[4] - __mu2.as_char[4];
__res.as_char[5] = __mu1.as_char[5] - __mu2.as_char[5];
__res.as_char[6] = __mu1.as_char[6] - __mu2.as_char[6];
__res.as_char[7] = __mu1.as_char[7] - __mu2.as_char[7];
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubb (__m64 __m1, __m64 __m2)
{
return _mm_sub_pi8 (__m1, __m2);
}
/* Subtract the 16-bit values in M2 from the 16-bit values in M1. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sub_pi16 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR8
__vector signed short __a, __b, __c;
__a = (__vector signed short)vec_splats (__m1);
__b = (__vector signed short)vec_splats (__m2);
__c = vec_sub (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_short[0] = __mu1.as_short[0] - __mu2.as_short[0];
__res.as_short[1] = __mu1.as_short[1] - __mu2.as_short[1];
__res.as_short[2] = __mu1.as_short[2] - __mu2.as_short[2];
__res.as_short[3] = __mu1.as_short[3] - __mu2.as_short[3];
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubw (__m64 __m1, __m64 __m2)
{
return _mm_sub_pi16 (__m1, __m2);
}
/* Subtract the 32-bit values in M2 from the 32-bit values in M1. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sub_pi32 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR9
__vector signed int __a, __b, __c;
__a = (__vector signed int)vec_splats (__m1);
__b = (__vector signed int)vec_splats (__m2);
__c = vec_sub (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_int[0] = __mu1.as_int[0] - __mu2.as_int[0];
__res.as_int[1] = __mu1.as_int[1] - __mu2.as_int[1];
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubd (__m64 __m1, __m64 __m2)
{
return _mm_sub_pi32 (__m1, __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_add_si64 (__m64 __m1, __m64 __m2)
{
return (__m1 + __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sub_si64 (__m64 __m1, __m64 __m2)
{
return (__m1 - __m2);
}
/* Shift the 64-bit value in M left by COUNT. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sll_si64 (__m64 __m, __m64 __count)
{
return (__m << __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psllq (__m64 __m, __m64 __count)
{
return _mm_sll_si64 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_slli_si64 (__m64 __m, const int __count)
{
return (__m << __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psllqi (__m64 __m, const int __count)
{
return _mm_slli_si64 (__m, __count);
}
/* Shift the 64-bit value in M left by COUNT; shift in zeros. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srl_si64 (__m64 __m, __m64 __count)
{
return (__m >> __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrlq (__m64 __m, __m64 __count)
{
return _mm_srl_si64 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srli_si64 (__m64 __m, const int __count)
{
return (__m >> __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrlqi (__m64 __m, const int __count)
{
return _mm_srli_si64 (__m, __count);
}
/* Bit-wise AND the 64-bit values in M1 and M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_and_si64 (__m64 __m1, __m64 __m2)
{
return (__m1 & __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pand (__m64 __m1, __m64 __m2)
{
return _mm_and_si64 (__m1, __m2);
}
/* Bit-wise complement the 64-bit value in M1 and bit-wise AND it with the
64-bit value in M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_andnot_si64 (__m64 __m1, __m64 __m2)
{
return (~__m1 & __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pandn (__m64 __m1, __m64 __m2)
{
return _mm_andnot_si64 (__m1, __m2);
}
/* Bit-wise inclusive OR the 64-bit values in M1 and M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_or_si64 (__m64 __m1, __m64 __m2)
{
return (__m1 | __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_por (__m64 __m1, __m64 __m2)
{
return _mm_or_si64 (__m1, __m2);
}
/* Bit-wise exclusive OR the 64-bit values in M1 and M2. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_xor_si64 (__m64 __m1, __m64 __m2)
{
return (__m1 ^ __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pxor (__m64 __m1, __m64 __m2)
{
return _mm_xor_si64 (__m1, __m2);
}
/* Creates a 64-bit zero. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_setzero_si64 (void)
{
return (__m64) 0;
}
/* Compare eight 8-bit values. The result of the comparison is 0xFF if the
test is true and zero if false. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpeq_pi8 (__m64 __m1, __m64 __m2)
{
#if defined(_ARCH_PWR6) && defined(__powerpc64__)
__m64 __res;
__asm__(
"cmpb %0,%1,%2;\n"
: "=r" (__res)
: "r" (__m1),
"r" (__m2)
: );
return (__res);
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_char[0] = (__mu1.as_char[0] == __mu2.as_char[0])? -1: 0;
__res.as_char[1] = (__mu1.as_char[1] == __mu2.as_char[1])? -1: 0;
__res.as_char[2] = (__mu1.as_char[2] == __mu2.as_char[2])? -1: 0;
__res.as_char[3] = (__mu1.as_char[3] == __mu2.as_char[3])? -1: 0;
__res.as_char[4] = (__mu1.as_char[4] == __mu2.as_char[4])? -1: 0;
__res.as_char[5] = (__mu1.as_char[5] == __mu2.as_char[5])? -1: 0;
__res.as_char[6] = (__mu1.as_char[6] == __mu2.as_char[6])? -1: 0;
__res.as_char[7] = (__mu1.as_char[7] == __mu2.as_char[7])? -1: 0;
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpeqb (__m64 __m1, __m64 __m2)
{
return _mm_cmpeq_pi8 (__m1, __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpgt_pi8 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR8
__vector signed char __a, __b, __c;
__a = (__vector signed char)vec_splats (__m1);
__b = (__vector signed char)vec_splats (__m2);
__c = (__vector signed char)vec_cmpgt (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_char[0] = (__mu1.as_char[0] > __mu2.as_char[0])? -1: 0;
__res.as_char[1] = (__mu1.as_char[1] > __mu2.as_char[1])? -1: 0;
__res.as_char[2] = (__mu1.as_char[2] > __mu2.as_char[2])? -1: 0;
__res.as_char[3] = (__mu1.as_char[3] > __mu2.as_char[3])? -1: 0;
__res.as_char[4] = (__mu1.as_char[4] > __mu2.as_char[4])? -1: 0;
__res.as_char[5] = (__mu1.as_char[5] > __mu2.as_char[5])? -1: 0;
__res.as_char[6] = (__mu1.as_char[6] > __mu2.as_char[6])? -1: 0;
__res.as_char[7] = (__mu1.as_char[7] > __mu2.as_char[7])? -1: 0;
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpgtb (__m64 __m1, __m64 __m2)
{
return _mm_cmpgt_pi8 (__m1, __m2);
}
/* Compare four 16-bit values. The result of the comparison is 0xFFFF if
the test is true and zero if false. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpeq_pi16 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR8
__vector signed short __a, __b, __c;
__a = (__vector signed short)vec_splats (__m1);
__b = (__vector signed short)vec_splats (__m2);
__c = (__vector signed short)vec_cmpeq (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_short[0] = (__mu1.as_short[0] == __mu2.as_short[0])? -1: 0;
__res.as_short[1] = (__mu1.as_short[1] == __mu2.as_short[1])? -1: 0;
__res.as_short[2] = (__mu1.as_short[2] == __mu2.as_short[2])? -1: 0;
__res.as_short[3] = (__mu1.as_short[3] == __mu2.as_short[3])? -1: 0;
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpeqw (__m64 __m1, __m64 __m2)
{
return _mm_cmpeq_pi16 (__m1, __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpgt_pi16 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR8
__vector signed short __a, __b, __c;
__a = (__vector signed short)vec_splats (__m1);
__b = (__vector signed short)vec_splats (__m2);
__c = (__vector signed short)vec_cmpgt (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_short[0] = (__mu1.as_short[0] > __mu2.as_short[0])? -1: 0;
__res.as_short[1] = (__mu1.as_short[1] > __mu2.as_short[1])? -1: 0;
__res.as_short[2] = (__mu1.as_short[2] > __mu2.as_short[2])? -1: 0;
__res.as_short[3] = (__mu1.as_short[3] > __mu2.as_short[3])? -1: 0;
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpgtw (__m64 __m1, __m64 __m2)
{
return _mm_cmpgt_pi16 (__m1, __m2);
}
/* Compare two 32-bit values. The result of the comparison is 0xFFFFFFFF if
the test is true and zero if false. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpeq_pi32 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR9
__vector signed int __a, __b, __c;
__a = (__vector signed int)vec_splats (__m1);
__b = (__vector signed int)vec_splats (__m2);
__c = (__vector signed int)vec_cmpeq (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_int[0] = (__mu1.as_int[0] == __mu2.as_int[0])? -1: 0;
__res.as_int[1] = (__mu1.as_int[1] == __mu2.as_int[1])? -1: 0;
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpeqd (__m64 __m1, __m64 __m2)
{
return _mm_cmpeq_pi32 (__m1, __m2);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpgt_pi32 (__m64 __m1, __m64 __m2)
{
#if _ARCH_PWR9
__vector signed int __a, __b, __c;
__a = (__vector signed int)vec_splats (__m1);
__b = (__vector signed int)vec_splats (__m2);
__c = (__vector signed int)vec_cmpgt (__a, __b);
return (__m64) ((__vector long long) __c)[0];
#else
__m64_union __mu1, __mu2, __res;
__mu1.as_m64 = __m1;
__mu2.as_m64 = __m2;
__res.as_int[0] = (__mu1.as_int[0] > __mu2.as_int[0])? -1: 0;
__res.as_int[1] = (__mu1.as_int[1] > __mu2.as_int[1])? -1: 0;
return (__m64) __res.as_m64;
#endif
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pcmpgtd (__m64 __m1, __m64 __m2)
{
return _mm_cmpgt_pi32 (__m1, __m2);
}
#if _ARCH_PWR8
/* Add the 8-bit values in M1 to the 8-bit values in M2 using signed
saturated arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_adds_pi8 (__m64 __m1, __m64 __m2)
{
__vector signed char __a, __b, __c;
__a = (__vector signed char)vec_splats (__m1);
__b = (__vector signed char)vec_splats (__m2);
__c = vec_adds (__a, __b);
return (__m64) ((__vector long long) __c)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddsb (__m64 __m1, __m64 __m2)
{
return _mm_adds_pi8 (__m1, __m2);
}
/* Add the 16-bit values in M1 to the 16-bit values in M2 using signed
saturated arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_adds_pi16 (__m64 __m1, __m64 __m2)
{
__vector signed short __a, __b, __c;
__a = (__vector signed short)vec_splats (__m1);
__b = (__vector signed short)vec_splats (__m2);
__c = vec_adds (__a, __b);
return (__m64) ((__vector long long) __c)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddsw (__m64 __m1, __m64 __m2)
{
return _mm_adds_pi16 (__m1, __m2);
}
/* Add the 8-bit values in M1 to the 8-bit values in M2 using unsigned
saturated arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_adds_pu8 (__m64 __m1, __m64 __m2)
{
__vector unsigned char __a, __b, __c;
__a = (__vector unsigned char)vec_splats (__m1);
__b = (__vector unsigned char)vec_splats (__m2);
__c = vec_adds (__a, __b);
return (__m64) ((__vector long long) __c)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddusb (__m64 __m1, __m64 __m2)
{
return _mm_adds_pu8 (__m1, __m2);
}
/* Add the 16-bit values in M1 to the 16-bit values in M2 using unsigned
saturated arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_adds_pu16 (__m64 __m1, __m64 __m2)
{
__vector unsigned short __a, __b, __c;
__a = (__vector unsigned short)vec_splats (__m1);
__b = (__vector unsigned short)vec_splats (__m2);
__c = vec_adds (__a, __b);
return (__m64) ((__vector long long) __c)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_paddusw (__m64 __m1, __m64 __m2)
{
return _mm_adds_pu16 (__m1, __m2);
}
/* Subtract the 8-bit values in M2 from the 8-bit values in M1 using signed
saturating arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_subs_pi8 (__m64 __m1, __m64 __m2)
{
__vector signed char __a, __b, __c;
__a = (__vector signed char)vec_splats (__m1);
__b = (__vector signed char)vec_splats (__m2);
__c = vec_subs (__a, __b);
return (__m64) ((__vector long long) __c)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubsb (__m64 __m1, __m64 __m2)
{
return _mm_subs_pi8 (__m1, __m2);
}
/* Subtract the 16-bit values in M2 from the 16-bit values in M1 using
signed saturating arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_subs_pi16 (__m64 __m1, __m64 __m2)
{
__vector signed short __a, __b, __c;
__a = (__vector signed short)vec_splats (__m1);
__b = (__vector signed short)vec_splats (__m2);
__c = vec_subs (__a, __b);
return (__m64) ((__vector long long) __c)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubsw (__m64 __m1, __m64 __m2)
{
return _mm_subs_pi16 (__m1, __m2);
}
/* Subtract the 8-bit values in M2 from the 8-bit values in M1 using
unsigned saturating arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_subs_pu8 (__m64 __m1, __m64 __m2)
{
__vector unsigned char __a, __b, __c;
__a = (__vector unsigned char)vec_splats (__m1);
__b = (__vector unsigned char)vec_splats (__m2);
__c = vec_subs (__a, __b);
return (__m64) ((__vector long long) __c)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubusb (__m64 __m1, __m64 __m2)
{
return _mm_subs_pu8 (__m1, __m2);
}
/* Subtract the 16-bit values in M2 from the 16-bit values in M1 using
unsigned saturating arithmetic. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_subs_pu16 (__m64 __m1, __m64 __m2)
{
__vector unsigned short __a, __b, __c;
__a = (__vector unsigned short)vec_splats (__m1);
__b = (__vector unsigned short)vec_splats (__m2);
__c = vec_subs (__a, __b);
return (__m64) ((__vector long long) __c)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psubusw (__m64 __m1, __m64 __m2)
{
return _mm_subs_pu16 (__m1, __m2);
}
/* Multiply four 16-bit values in M1 by four 16-bit values in M2 producing
four 32-bit intermediate results, which are then summed by pairs to
produce two 32-bit results. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_madd_pi16 (__m64 __m1, __m64 __m2)
{
__vector signed short __a, __b;
__vector signed int __c;
__vector signed int __zero = {0, 0, 0, 0};
__a = (__vector signed short)vec_splats (__m1);
__b = (__vector signed short)vec_splats (__m2);
__c = vec_vmsumshm (__a, __b, __zero);
return (__m64) ((__vector long long) __c)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pmaddwd (__m64 __m1, __m64 __m2)
{
return _mm_madd_pi16 (__m1, __m2);
}
/* Multiply four signed 16-bit values in M1 by four signed 16-bit values in
M2 and produce the high 16 bits of the 32-bit results. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_mulhi_pi16 (__m64 __m1, __m64 __m2)
{
__vector signed short __a, __b;
__vector signed short __c;
__vector signed int __w0, __w1;
__vector unsigned char __xform1 = {
#ifdef __LITTLE_ENDIAN__
0x02, 0x03, 0x12, 0x13, 0x06, 0x07, 0x16, 0x17,
0x0A, 0x0B, 0x1A, 0x1B, 0x0E, 0x0F, 0x1E, 0x1F
#else
0x00, 0x01, 0x10, 0x11, 0x04, 0x05, 0x14, 0x15,
0x00, 0x01, 0x10, 0x11, 0x04, 0x05, 0x14, 0x15
#endif
};
__a = (__vector signed short)vec_splats (__m1);
__b = (__vector signed short)vec_splats (__m2);
__w0 = vec_vmulesh (__a, __b);
__w1 = vec_vmulosh (__a, __b);
__c = (__vector signed short)vec_perm (__w0, __w1, __xform1);
return (__m64) ((__vector long long) __c)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pmulhw (__m64 __m1, __m64 __m2)
{
return _mm_mulhi_pi16 (__m1, __m2);
}
/* Multiply four 16-bit values in M1 by four 16-bit values in M2 and produce
the low 16 bits of the results. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_mullo_pi16 (__m64 __m1, __m64 __m2)
{
__vector signed short __a, __b, __c;
__a = (__vector signed short)vec_splats (__m1);
__b = (__vector signed short)vec_splats (__m2);
__c = __a * __b;
return (__m64) ((__vector long long) __c)[0];
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pmullw (__m64 __m1, __m64 __m2)
{
return _mm_mullo_pi16 (__m1, __m2);
}
/* Shift four 16-bit values in M left by COUNT. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sll_pi16 (__m64 __m, __m64 __count)
{
__vector signed short __r;
__vector unsigned short __c;
if (__count <= 15)
{
__r = (__vector signed short)vec_splats (__m);
__c = (__vector unsigned short)vec_splats ((unsigned short)__count);
__r = vec_sl (__r, (__vector unsigned short)__c);
return (__m64) ((__vector long long) __r)[0];
}
else
return (0);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psllw (__m64 __m, __m64 __count)
{
return _mm_sll_pi16 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_slli_pi16 (__m64 __m, int __count)
{
/* Promote int to long then invoke mm_sll_pi16. */
return _mm_sll_pi16 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psllwi (__m64 __m, int __count)
{
return _mm_slli_pi16 (__m, __count);
}
/* Shift two 32-bit values in M left by COUNT. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sll_pi32 (__m64 __m, __m64 __count)
{
__m64_union __res;
__res.as_m64 = __m;
__res.as_int[0] = __res.as_int[0] << __count;
__res.as_int[1] = __res.as_int[1] << __count;
return (__res.as_m64);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pslld (__m64 __m, __m64 __count)
{
return _mm_sll_pi32 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_slli_pi32 (__m64 __m, int __count)
{
/* Promote int to long then invoke mm_sll_pi32. */
return _mm_sll_pi32 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pslldi (__m64 __m, int __count)
{
return _mm_slli_pi32 (__m, __count);
}
/* Shift four 16-bit values in M right by COUNT; shift in the sign bit. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sra_pi16 (__m64 __m, __m64 __count)
{
__vector signed short __r;
__vector unsigned short __c;
if (__count <= 15)
{
__r = (__vector signed short)vec_splats (__m);
__c = (__vector unsigned short)vec_splats ((unsigned short)__count);
__r = vec_sra (__r, (__vector unsigned short)__c);
return (__m64) ((__vector long long) __r)[0];
}
else
return (0);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psraw (__m64 __m, __m64 __count)
{
return _mm_sra_pi16 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srai_pi16 (__m64 __m, int __count)
{
/* Promote int to long then invoke mm_sra_pi32. */
return _mm_sra_pi16 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrawi (__m64 __m, int __count)
{
return _mm_srai_pi16 (__m, __count);
}
/* Shift two 32-bit values in M right by COUNT; shift in the sign bit. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sra_pi32 (__m64 __m, __m64 __count)
{
__m64_union __res;
__res.as_m64 = __m;
__res.as_int[0] = __res.as_int[0] >> __count;
__res.as_int[1] = __res.as_int[1] >> __count;
return (__res.as_m64);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrad (__m64 __m, __m64 __count)
{
return _mm_sra_pi32 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srai_pi32 (__m64 __m, int __count)
{
/* Promote int to long then invoke mm_sra_pi32. */
return _mm_sra_pi32 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psradi (__m64 __m, int __count)
{
return _mm_srai_pi32 (__m, __count);
}
/* Shift four 16-bit values in M right by COUNT; shift in zeros. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srl_pi16 (__m64 __m, __m64 __count)
{
__vector unsigned short __r;
__vector unsigned short __c;
if (__count <= 15)
{
__r = (__vector unsigned short)vec_splats (__m);
__c = (__vector unsigned short)vec_splats ((unsigned short)__count);
__r = vec_sr (__r, (__vector unsigned short)__c);
return (__m64) ((__vector long long) __r)[0];
}
else
return (0);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrlw (__m64 __m, __m64 __count)
{
return _mm_srl_pi16 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srli_pi16 (__m64 __m, int __count)
{
/* Promote int to long then invoke mm_sra_pi32. */
return _mm_srl_pi16 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrlwi (__m64 __m, int __count)
{
return _mm_srli_pi16 (__m, __count);
}
/* Shift two 32-bit values in M right by COUNT; shift in zeros. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srl_pi32 (__m64 __m, __m64 __count)
{
__m64_union __res;
__res.as_m64 = __m;
__res.as_int[0] = (unsigned int)__res.as_int[0] >> __count;
__res.as_int[1] = (unsigned int)__res.as_int[1] >> __count;
return (__res.as_m64);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrld (__m64 __m, __m64 __count)
{
return _mm_srl_pi32 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_srli_pi32 (__m64 __m, int __count)
{
/* Promote int to long then invoke mm_srl_pi32. */
return _mm_srl_pi32 (__m, __count);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psrldi (__m64 __m, int __count)
{
return _mm_srli_pi32 (__m, __count);
}
#endif /* _ARCH_PWR8 */
/* Creates a vector of two 32-bit values; I0 is least significant. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set_pi32 (int __i1, int __i0)
{
__m64_union __res;
__res.as_int[0] = __i0;
__res.as_int[1] = __i1;
return (__res.as_m64);
}
/* Creates a vector of four 16-bit values; W0 is least significant. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set_pi16 (short __w3, short __w2, short __w1, short __w0)
{
__m64_union __res;
__res.as_short[0] = __w0;
__res.as_short[1] = __w1;
__res.as_short[2] = __w2;
__res.as_short[3] = __w3;
return (__res.as_m64);
}
/* Creates a vector of eight 8-bit values; B0 is least significant. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set_pi8 (char __b7, char __b6, char __b5, char __b4,
char __b3, char __b2, char __b1, char __b0)
{
__m64_union __res;
__res.as_char[0] = __b0;
__res.as_char[1] = __b1;
__res.as_char[2] = __b2;
__res.as_char[3] = __b3;
__res.as_char[4] = __b4;
__res.as_char[5] = __b5;
__res.as_char[6] = __b6;
__res.as_char[7] = __b7;
return (__res.as_m64);
}
/* Similar, but with the arguments in reverse order. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_setr_pi32 (int __i0, int __i1)
{
__m64_union __res;
__res.as_int[0] = __i0;
__res.as_int[1] = __i1;
return (__res.as_m64);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_setr_pi16 (short __w0, short __w1, short __w2, short __w3)
{
return _mm_set_pi16 (__w3, __w2, __w1, __w0);
}
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_setr_pi8 (char __b0, char __b1, char __b2, char __b3,
char __b4, char __b5, char __b6, char __b7)
{
return _mm_set_pi8 (__b7, __b6, __b5, __b4, __b3, __b2, __b1, __b0);
}
/* Creates a vector of two 32-bit values, both elements containing I. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set1_pi32 (int __i)
{
__m64_union __res;
__res.as_int[0] = __i;
__res.as_int[1] = __i;
return (__res.as_m64);
}
/* Creates a vector of four 16-bit values, all elements containing W. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set1_pi16 (short __w)
{
#if _ARCH_PWR9
__vector signed short w;
w = (__vector signed short)vec_splats (__w);
return (__m64) ((__vector long long) w)[0];
#else
__m64_union __res;
__res.as_short[0] = __w;
__res.as_short[1] = __w;
__res.as_short[2] = __w;
__res.as_short[3] = __w;
return (__res.as_m64);
#endif
}
/* Creates a vector of eight 8-bit values, all elements containing B. */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set1_pi8 (signed char __b)
{
#if _ARCH_PWR8
__vector signed char __res;
__res = (__vector signed char)vec_splats (__b);
return (__m64) ((__vector long long) __res)[0];
#else
__m64_union __res;
__res.as_char[0] = __b;
__res.as_char[1] = __b;
__res.as_char[2] = __b;
__res.as_char[3] = __b;
__res.as_char[4] = __b;
__res.as_char[5] = __b;
__res.as_char[6] = __b;
__res.as_char[7] = __b;
return (__res.as_m64);
#endif
}
#endif /* _MMINTRIN_H_INCLUDED */