;; Machine description for PowerPC synchronization instructions.
;; Copyright (C) 2005-2020 Free Software Foundation, Inc.
;; Contributed by Geoffrey Keating.
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; .
(define_mode_attr larx [(QI "lbarx")
(HI "lharx")
(SI "lwarx")
(DI "ldarx")
(TI "lqarx")])
(define_mode_attr stcx [(QI "stbcx.")
(HI "sthcx.")
(SI "stwcx.")
(DI "stdcx.")
(TI "stqcx.")])
(define_code_iterator FETCHOP [plus minus ior xor and])
(define_code_attr fetchop_name
[(plus "add") (minus "sub") (ior "or") (xor "xor") (and "and")])
(define_code_attr fetchop_pred
[(plus "add_operand") (minus "int_reg_operand")
(ior "logical_operand") (xor "logical_operand") (and "and_operand")])
(define_expand "mem_thread_fence"
[(match_operand:SI 0 "const_int_operand")] ;; model
""
{
enum memmodel model = memmodel_base (INTVAL (operands[0]));
switch (model)
{
case MEMMODEL_RELAXED:
break;
case MEMMODEL_CONSUME:
case MEMMODEL_ACQUIRE:
case MEMMODEL_RELEASE:
case MEMMODEL_ACQ_REL:
emit_insn (gen_lwsync ());
break;
case MEMMODEL_SEQ_CST:
emit_insn (gen_hwsync ());
break;
default:
gcc_unreachable ();
}
DONE;
})
(define_expand "hwsync"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_SYNC))]
""
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "*hwsync"
[(set (match_operand:BLK 0 "" "")
(unspec:BLK [(match_dup 0)] UNSPEC_SYNC))]
""
"sync"
[(set_attr "type" "sync")])
(define_expand "lwsync"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_LWSYNC))]
""
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "*lwsync"
[(set (match_operand:BLK 0 "" "")
(unspec:BLK [(match_dup 0)] UNSPEC_LWSYNC))]
""
{
if (TARGET_NO_LWSYNC)
return "sync";
else
return "lwsync";
}
[(set_attr "type" "sync")])
(define_insn "isync"
[(unspec_volatile:BLK [(const_int 0)] UNSPECV_ISYNC)]
""
"isync"
[(set_attr "type" "isync")])
;; Types that we should provide atomic instructions for.
(define_mode_iterator AINT [QI
HI
SI
(DI "TARGET_POWERPC64")
(TI "TARGET_SYNC_TI")])
;; The control dependency used for load dependency described
;; in B.2.3 of the Power ISA 2.06B.
(define_insn "loadsync_"
[(unspec_volatile:BLK [(match_operand:AINT 0 "register_operand" "r")]
UNSPECV_ISYNC)
(clobber (match_scratch:CC 1 "=y"))]
""
"cmpw %1,%0,%0\;bne- %1,$+4\;isync"
[(set_attr "type" "isync")
(set_attr "length" "12")])
;; If TARGET_PREFIXED, always use plq rather than lq.
(define_insn "load_quadpti"
[(set (match_operand:PTI 0 "quad_int_reg_operand" "=&r")
(unspec:PTI
[(match_operand:TI 1 "quad_memory_operand" "wQ")] UNSPEC_LSQ))]
"TARGET_SYNC_TI
&& !reg_mentioned_p (operands[0], operands[1])"
"lq %0,%1"
[(set_attr "type" "load")
(set (attr "prefixed") (if_then_else (match_test "TARGET_PREFIXED")
(const_string "yes")
(const_string "no")))])
;; Pattern load_quadpti will always use plq for atomic TImode if
;; TARGET_PREFIXED. It has the correct doubleword ordering on either LE
;; or BE, so we can just move the result into the output register and
;; do not need to do the doubleword swap for LE. Also this avoids any
;; confusion about whether the lq vs plq might be used based on whether
;; op1 has PC-relative addressing. We could potentially allow BE to
;; use lq because it doesn't have the doubleword ordering problem.
(define_expand "atomic_load"
[(set (match_operand:AINT 0 "register_operand") ;; output
(match_operand:AINT 1 "memory_operand")) ;; memory
(use (match_operand:SI 2 "const_int_operand"))] ;; model
""
{
if (mode == TImode && !TARGET_SYNC_TI)
FAIL;
enum memmodel model = memmodel_base (INTVAL (operands[2]));
if (is_mm_seq_cst (model))
emit_insn (gen_hwsync ());
if (mode != TImode)
emit_move_insn (operands[0], operands[1]);
else
{
rtx op0 = operands[0];
rtx op1 = operands[1];
rtx pti_reg = gen_reg_rtx (PTImode);
if (!quad_address_p (XEXP (op1, 0), TImode, false))
{
rtx old_addr = XEXP (op1, 0);
rtx new_addr = force_reg (Pmode, old_addr);
operands[1] = op1 = replace_equiv_address (op1, new_addr);
}
emit_insn (gen_load_quadpti (pti_reg, op1));
if (WORDS_BIG_ENDIAN || TARGET_PREFIXED)
emit_move_insn (op0, gen_lowpart (TImode, pti_reg));
else
{
emit_move_insn (gen_lowpart (DImode, op0), gen_highpart (DImode, pti_reg));
emit_move_insn (gen_highpart (DImode, op0), gen_lowpart (DImode, pti_reg));
}
}
switch (model)
{
case MEMMODEL_RELAXED:
break;
case MEMMODEL_CONSUME:
case MEMMODEL_ACQUIRE:
case MEMMODEL_SEQ_CST:
emit_insn (gen_loadsync_ (operands[0]));
break;
default:
gcc_unreachable ();
}
DONE;
})
;; If TARGET_PREFIXED, always use pstq rather than stq.
(define_insn "store_quadpti"
[(set (match_operand:PTI 0 "quad_memory_operand" "=wQ")
(unspec:PTI
[(match_operand:PTI 1 "quad_int_reg_operand" "r")] UNSPEC_LSQ))]
"TARGET_SYNC_TI"
"stq %1,%0"
[(set_attr "type" "store")
(set (attr "prefixed") (if_then_else (match_test "TARGET_PREFIXED")
(const_string "yes")
(const_string "no")))])
;; Pattern store_quadpti will always use pstq if TARGET_PREFIXED,
;; so the doubleword swap is never needed in that case.
(define_expand "atomic_store"
[(set (match_operand:AINT 0 "memory_operand") ;; memory
(match_operand:AINT 1 "register_operand")) ;; input
(use (match_operand:SI 2 "const_int_operand"))] ;; model
""
{
if (mode == TImode && !TARGET_SYNC_TI)
FAIL;
enum memmodel model = memmodel_base (INTVAL (operands[2]));
switch (model)
{
case MEMMODEL_RELAXED:
break;
case MEMMODEL_RELEASE:
emit_insn (gen_lwsync ());
break;
case MEMMODEL_SEQ_CST:
emit_insn (gen_hwsync ());
break;
default:
gcc_unreachable ();
}
if (mode != TImode)
emit_move_insn (operands[0], operands[1]);
else
{
rtx op0 = operands[0];
rtx op1 = operands[1];
rtx pti_reg = gen_reg_rtx (PTImode);
if (!quad_address_p (XEXP (op0, 0), TImode, false))
{
rtx old_addr = XEXP (op0, 0);
rtx new_addr = force_reg (Pmode, old_addr);
operands[0] = op0 = replace_equiv_address (op0, new_addr);
}
if (WORDS_BIG_ENDIAN || TARGET_PREFIXED)
emit_move_insn (pti_reg, gen_lowpart (PTImode, op1));
else
{
emit_move_insn (gen_lowpart (DImode, pti_reg), gen_highpart (DImode, op1));
emit_move_insn (gen_highpart (DImode, pti_reg), gen_lowpart (DImode, op1));
}
emit_insn (gen_store_quadpti (gen_lowpart (PTImode, op0), pti_reg));
}
DONE;
})
;; Any supported integer mode that has atomic larx/stcx. instrucitons
;; other than the quad memory operations, which have special restrictions.
;; Byte/halfword atomic instructions were added in ISA 2.06B, but were phased
;; in and did not show up until power8. TImode atomic lqarx/stqcx. require
;; special handling due to even/odd register requirements.
(define_mode_iterator ATOMIC [(QI "TARGET_SYNC_HI_QI")
(HI "TARGET_SYNC_HI_QI")
SI
(DI "TARGET_POWERPC64")])
(define_insn "load_locked"
[(set (match_operand:ATOMIC 0 "int_reg_operand" "=r")
(unspec_volatile:ATOMIC
[(match_operand:ATOMIC 1 "memory_operand" "Z")] UNSPECV_LL))]
""
" %0,%y1"
[(set_attr "type" "load_l")])
(define_insn "load_locked_si"
[(set (match_operand:SI 0 "int_reg_operand" "=r")
(unspec_volatile:SI
[(match_operand:QHI 1 "memory_operand" "Z")] UNSPECV_LL))]
"TARGET_SYNC_HI_QI"
" %0,%y1"
[(set_attr "type" "load_l")])
;; Use PTImode to get even/odd register pairs.
;; Use a temporary register to force getting an even register for the
;; lqarx/stqcrx. instructions. Normal optimizations will eliminate this extra
;; copy on big endian systems.
;; On little endian systems where non-atomic quad word load/store instructions
;; are not used, the address can be register+offset, so make sure the address
;; is indexed or indirect before register allocation.
(define_expand "load_lockedti"
[(use (match_operand:TI 0 "quad_int_reg_operand"))
(use (match_operand:TI 1 "memory_operand"))]
"TARGET_SYNC_TI"
{
rtx op0 = operands[0];
rtx op1 = operands[1];
rtx pti = gen_reg_rtx (PTImode);
if (!indexed_or_indirect_operand (op1, TImode))
{
rtx old_addr = XEXP (op1, 0);
rtx new_addr = force_reg (Pmode, old_addr);
operands[1] = op1 = change_address (op1, TImode, new_addr);
}
emit_insn (gen_load_lockedpti (pti, op1));
if (WORDS_BIG_ENDIAN)
emit_move_insn (op0, gen_lowpart (TImode, pti));
else
{
emit_move_insn (gen_lowpart (DImode, op0), gen_highpart (DImode, pti));
emit_move_insn (gen_highpart (DImode, op0), gen_lowpart (DImode, pti));
}
DONE;
})
(define_insn "load_lockedpti"
[(set (match_operand:PTI 0 "quad_int_reg_operand" "=&r")
(unspec_volatile:PTI
[(match_operand:TI 1 "indexed_or_indirect_operand" "Z")] UNSPECV_LL))]
"TARGET_SYNC_TI
&& !reg_mentioned_p (operands[0], operands[1])
&& quad_int_reg_operand (operands[0], PTImode)"
"lqarx %0,%y1"
[(set_attr "type" "load_l")])
(define_insn "store_conditional"
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(unspec_volatile:CC [(const_int 0)] UNSPECV_SC))
(set (match_operand:ATOMIC 1 "memory_operand" "=Z")
(match_operand:ATOMIC 2 "int_reg_operand" "r"))]
""
" %2,%y1"
[(set_attr "type" "store_c")])
;; Use a temporary register to force getting an even register for the
;; lqarx/stqcrx. instructions. Normal optimizations will eliminate this extra
;; copy on big endian systems.
;; On little endian systems where non-atomic quad word load/store instructions
;; are not used, the address can be register+offset, so make sure the address
;; is indexed or indirect before register allocation.
(define_expand "store_conditionalti"
[(use (match_operand:CC 0 "cc_reg_operand"))
(use (match_operand:TI 1 "memory_operand"))
(use (match_operand:TI 2 "quad_int_reg_operand"))]
"TARGET_SYNC_TI"
{
rtx op0 = operands[0];
rtx op1 = operands[1];
rtx op2 = operands[2];
rtx addr = XEXP (op1, 0);
rtx pti_mem;
rtx pti_reg;
if (!indexed_or_indirect_operand (op1, TImode))
{
rtx new_addr = force_reg (Pmode, addr);
operands[1] = op1 = change_address (op1, TImode, new_addr);
addr = new_addr;
}
pti_mem = change_address (op1, PTImode, addr);
pti_reg = gen_reg_rtx (PTImode);
if (WORDS_BIG_ENDIAN)
emit_move_insn (pti_reg, gen_lowpart (PTImode, op2));
else
{
emit_move_insn (gen_lowpart (DImode, pti_reg), gen_highpart (DImode, op2));
emit_move_insn (gen_highpart (DImode, pti_reg), gen_lowpart (DImode, op2));
}
emit_insn (gen_store_conditionalpti (op0, pti_mem, pti_reg));
DONE;
})
(define_insn "store_conditionalpti"
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(unspec_volatile:CC [(const_int 0)] UNSPECV_SC))
(set (match_operand:PTI 1 "indexed_or_indirect_operand" "=Z")
(match_operand:PTI 2 "quad_int_reg_operand" "r"))]
"TARGET_SYNC_TI && quad_int_reg_operand (operands[2], PTImode)"
"stqcx. %2,%y1"
[(set_attr "type" "store_c")])
(define_expand "atomic_compare_and_swap"
[(match_operand:SI 0 "int_reg_operand") ;; bool out
(match_operand:AINT 1 "int_reg_operand") ;; val out
(match_operand:AINT 2 "memory_operand") ;; memory
(match_operand:AINT 3 "reg_or_short_operand") ;; expected
(match_operand:AINT 4 "int_reg_operand") ;; desired
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; model succ
(match_operand:SI 7 "const_int_operand")] ;; model fail
""
{
rs6000_expand_atomic_compare_and_swap (operands);
DONE;
})
(define_expand "atomic_exchange"
[(match_operand:AINT 0 "int_reg_operand") ;; output
(match_operand:AINT 1 "memory_operand") ;; memory
(match_operand:AINT 2 "int_reg_operand") ;; input
(match_operand:SI 3 "const_int_operand")] ;; model
""
{
rs6000_expand_atomic_exchange (operands);
DONE;
})
(define_expand "atomic_"
[(match_operand:AINT 0 "memory_operand") ;; memory
(FETCHOP:AINT (match_dup 0)
(match_operand:AINT 1 "")) ;; operand
(match_operand:SI 2 "const_int_operand")] ;; model
""
{
rs6000_expand_atomic_op (, operands[0], operands[1],
NULL_RTX, NULL_RTX, operands[2]);
DONE;
})
(define_expand "atomic_nand"
[(match_operand:AINT 0 "memory_operand") ;; memory
(match_operand:AINT 1 "int_reg_operand") ;; operand
(match_operand:SI 2 "const_int_operand")] ;; model
""
{
rs6000_expand_atomic_op (NOT, operands[0], operands[1],
NULL_RTX, NULL_RTX, operands[2]);
DONE;
})
(define_expand "atomic_fetch_"
[(match_operand:AINT 0 "int_reg_operand") ;; output
(match_operand:AINT 1 "memory_operand") ;; memory
(FETCHOP:AINT (match_dup 1)
(match_operand:AINT 2 "")) ;; operand
(match_operand:SI 3 "const_int_operand")] ;; model
""
{
rs6000_expand_atomic_op (, operands[1], operands[2],
operands[0], NULL_RTX, operands[3]);
DONE;
})
(define_expand "atomic_fetch_nand"
[(match_operand:AINT 0 "int_reg_operand") ;; output
(match_operand:AINT 1 "memory_operand") ;; memory
(match_operand:AINT 2 "int_reg_operand") ;; operand
(match_operand:SI 3 "const_int_operand")] ;; model
""
{
rs6000_expand_atomic_op (NOT, operands[1], operands[2],
operands[0], NULL_RTX, operands[3]);
DONE;
})
(define_expand "atomic__fetch"
[(match_operand:AINT 0 "int_reg_operand") ;; output
(match_operand:AINT 1 "memory_operand") ;; memory
(FETCHOP:AINT (match_dup 1)
(match_operand:AINT 2 "")) ;; operand
(match_operand:SI 3 "const_int_operand")] ;; model
""
{
rs6000_expand_atomic_op (, operands[1], operands[2],
NULL_RTX, operands[0], operands[3]);
DONE;
})
(define_expand "atomic_nand_fetch"
[(match_operand:AINT 0 "int_reg_operand") ;; output
(match_operand:AINT 1 "memory_operand") ;; memory
(match_operand:AINT 2 "int_reg_operand") ;; operand
(match_operand:SI 3 "const_int_operand")] ;; model
""
{
rs6000_expand_atomic_op (NOT, operands[1], operands[2],
NULL_RTX, operands[0], operands[3]);
DONE;
})