/* Lower complex number operations to scalar operations.
Copyright (C) 2004-2020 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "tree-ssa-propagate.h"
#include "tree-hasher.h"
#include "cfgloop.h"
#include "cfganal.h"
/* For each complex ssa name, a lattice value. We're interested in finding
out whether a complex number is degenerate in some way, having only real
or only complex parts. */
enum
{
UNINITIALIZED = 0,
ONLY_REAL = 1,
ONLY_IMAG = 2,
VARYING = 3
};
/* The type complex_lattice_t holds combinations of the above
constants. */
typedef int complex_lattice_t;
#define PAIR(a, b) ((a) << 2 | (b))
class complex_propagate : public ssa_propagation_engine
{
enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
};
static vec complex_lattice_values;
/* For each complex variable, a pair of variables for the components exists in
the hashtable. */
static int_tree_htab_type *complex_variable_components;
/* For each complex SSA_NAME, a pair of ssa names for the components. */
static vec complex_ssa_name_components;
/* Vector of PHI triplets (original complex PHI and corresponding real and
imag PHIs if real and/or imag PHIs contain temporarily
non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
static vec phis_to_revisit;
/* BBs that need EH cleanup. */
static bitmap need_eh_cleanup;
/* Lookup UID in the complex_variable_components hashtable and return the
associated tree. */
static tree
cvc_lookup (unsigned int uid)
{
struct int_tree_map in;
in.uid = uid;
return complex_variable_components->find_with_hash (in, uid).to;
}
/* Insert the pair UID, TO into the complex_variable_components hashtable. */
static void
cvc_insert (unsigned int uid, tree to)
{
int_tree_map h;
int_tree_map *loc;
h.uid = uid;
loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
loc->uid = uid;
loc->to = to;
}
/* Return true if T is not a zero constant. In the case of real values,
we're only interested in +0.0. */
static int
some_nonzerop (tree t)
{
int zerop = false;
/* Operations with real or imaginary part of a complex number zero
cannot be treated the same as operations with a real or imaginary
operand if we care about the signs of zeros in the result. */
if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
else if (TREE_CODE (t) == FIXED_CST)
zerop = fixed_zerop (t);
else if (TREE_CODE (t) == INTEGER_CST)
zerop = integer_zerop (t);
return !zerop;
}
/* Compute a lattice value from the components of a complex type REAL
and IMAG. */
static complex_lattice_t
find_lattice_value_parts (tree real, tree imag)
{
int r, i;
complex_lattice_t ret;
r = some_nonzerop (real);
i = some_nonzerop (imag);
ret = r * ONLY_REAL + i * ONLY_IMAG;
/* ??? On occasion we could do better than mapping 0+0i to real, but we
certainly don't want to leave it UNINITIALIZED, which eventually gets
mapped to VARYING. */
if (ret == UNINITIALIZED)
ret = ONLY_REAL;
return ret;
}
/* Compute a lattice value from gimple_val T. */
static complex_lattice_t
find_lattice_value (tree t)
{
tree real, imag;
switch (TREE_CODE (t))
{
case SSA_NAME:
return complex_lattice_values[SSA_NAME_VERSION (t)];
case COMPLEX_CST:
real = TREE_REALPART (t);
imag = TREE_IMAGPART (t);
break;
default:
gcc_unreachable ();
}
return find_lattice_value_parts (real, imag);
}
/* Determine if LHS is something for which we're interested in seeing
simulation results. */
static bool
is_complex_reg (tree lhs)
{
return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
}
/* Mark the incoming parameters to the function as VARYING. */
static void
init_parameter_lattice_values (void)
{
tree parm, ssa_name;
for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
if (is_complex_reg (parm)
&& (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
}
/* Initialize simulation state for each statement. Return false if we
found no statements we want to simulate, and thus there's nothing
for the entire pass to do. */
static bool
init_dont_simulate_again (void)
{
basic_block bb;
bool saw_a_complex_op = false;
FOR_EACH_BB_FN (bb, cfun)
{
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
prop_set_simulate_again (phi,
is_complex_reg (gimple_phi_result (phi)));
}
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gimple *stmt;
tree op0, op1;
bool sim_again_p;
stmt = gsi_stmt (gsi);
op0 = op1 = NULL_TREE;
/* Most control-altering statements must be initially
simulated, else we won't cover the entire cfg. */
sim_again_p = stmt_ends_bb_p (stmt);
switch (gimple_code (stmt))
{
case GIMPLE_CALL:
if (gimple_call_lhs (stmt))
sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
break;
case GIMPLE_ASSIGN:
sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
else
op0 = gimple_assign_rhs1 (stmt);
if (gimple_num_ops (stmt) > 2)
op1 = gimple_assign_rhs2 (stmt);
break;
case GIMPLE_COND:
op0 = gimple_cond_lhs (stmt);
op1 = gimple_cond_rhs (stmt);
break;
default:
break;
}
if (op0 || op1)
switch (gimple_expr_code (stmt))
{
case EQ_EXPR:
case NE_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
|| TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
saw_a_complex_op = true;
break;
case NEGATE_EXPR:
case CONJ_EXPR:
if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
saw_a_complex_op = true;
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
/* The total store transformation performed during
gimplification creates such uninitialized loads
and we need to lower the statement to be able
to fix things up. */
if (TREE_CODE (op0) == SSA_NAME
&& ssa_undefined_value_p (op0))
saw_a_complex_op = true;
break;
default:
break;
}
prop_set_simulate_again (stmt, sim_again_p);
}
}
return saw_a_complex_op;
}
/* Evaluate statement STMT against the complex lattice defined above. */
enum ssa_prop_result
complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
tree *result_p)
{
complex_lattice_t new_l, old_l, op1_l, op2_l;
unsigned int ver;
tree lhs;
lhs = gimple_get_lhs (stmt);
/* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
if (!lhs || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
return SSA_PROP_VARYING;
/* These conditions should be satisfied due to the initial filter
set up in init_dont_simulate_again. */
gcc_assert (TREE_CODE (lhs) == SSA_NAME);
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
*result_p = lhs;
ver = SSA_NAME_VERSION (lhs);
old_l = complex_lattice_values[ver];
switch (gimple_expr_code (stmt))
{
case SSA_NAME:
case COMPLEX_CST:
new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
break;
case COMPLEX_EXPR:
new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt));
break;
case PLUS_EXPR:
case MINUS_EXPR:
op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
/* We've set up the lattice values such that IOR neatly
models addition. */
new_l = op1_l | op2_l;
break;
case MULT_EXPR:
case RDIV_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
/* Obviously, if either varies, so does the result. */
if (op1_l == VARYING || op2_l == VARYING)
new_l = VARYING;
/* Don't prematurely promote variables if we've not yet seen
their inputs. */
else if (op1_l == UNINITIALIZED)
new_l = op2_l;
else if (op2_l == UNINITIALIZED)
new_l = op1_l;
else
{
/* At this point both numbers have only one component. If the
numbers are of opposite kind, the result is imaginary,
otherwise the result is real. The add/subtract translates
the real/imag from/to 0/1; the ^ performs the comparison. */
new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
/* Don't allow the lattice value to flip-flop indefinitely. */
new_l |= old_l;
}
break;
case NEGATE_EXPR:
case CONJ_EXPR:
new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
break;
default:
new_l = VARYING;
break;
}
/* If nothing changed this round, let the propagator know. */
if (new_l == old_l)
return SSA_PROP_NOT_INTERESTING;
complex_lattice_values[ver] = new_l;
return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
}
/* Evaluate a PHI node against the complex lattice defined above. */
enum ssa_prop_result
complex_propagate::visit_phi (gphi *phi)
{
complex_lattice_t new_l, old_l;
unsigned int ver;
tree lhs;
int i;
lhs = gimple_phi_result (phi);
/* This condition should be satisfied due to the initial filter
set up in init_dont_simulate_again. */
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
return SSA_PROP_VARYING;
/* We've set up the lattice values such that IOR neatly models PHI meet. */
new_l = UNINITIALIZED;
for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
ver = SSA_NAME_VERSION (lhs);
old_l = complex_lattice_values[ver];
if (new_l == old_l)
return SSA_PROP_NOT_INTERESTING;
complex_lattice_values[ver] = new_l;
return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
}
/* Create one backing variable for a complex component of ORIG. */
static tree
create_one_component_var (tree type, tree orig, const char *prefix,
const char *suffix, enum tree_code code)
{
tree r = create_tmp_var (type, prefix);
DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
DECL_ARTIFICIAL (r) = 1;
if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
{
const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
name = ACONCAT ((name, suffix, NULL));
DECL_NAME (r) = get_identifier (name);
SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
DECL_HAS_DEBUG_EXPR_P (r) = 1;
DECL_IGNORED_P (r) = 0;
TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
}
else
{
DECL_IGNORED_P (r) = 1;
TREE_NO_WARNING (r) = 1;
}
return r;
}
/* Retrieve a value for a complex component of VAR. */
static tree
get_component_var (tree var, bool imag_p)
{
size_t decl_index = DECL_UID (var) * 2 + imag_p;
tree ret = cvc_lookup (decl_index);
if (ret == NULL)
{
ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
imag_p ? "CI" : "CR",
imag_p ? "$imag" : "$real",
imag_p ? IMAGPART_EXPR : REALPART_EXPR);
cvc_insert (decl_index, ret);
}
return ret;
}
/* Retrieve a value for a complex component of SSA_NAME. */
static tree
get_component_ssa_name (tree ssa_name, bool imag_p)
{
complex_lattice_t lattice = find_lattice_value (ssa_name);
size_t ssa_name_index;
tree ret;
if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
{
tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
if (SCALAR_FLOAT_TYPE_P (inner_type))
return build_real (inner_type, dconst0);
else
return build_int_cst (inner_type, 0);
}
ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
ret = complex_ssa_name_components[ssa_name_index];
if (ret == NULL)
{
if (SSA_NAME_VAR (ssa_name))
ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
else
ret = TREE_TYPE (TREE_TYPE (ssa_name));
ret = make_ssa_name (ret);
/* Copy some properties from the original. In particular, whether it
is used in an abnormal phi, and whether it's uninitialized. */
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
&& TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
{
SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
}
complex_ssa_name_components[ssa_name_index] = ret;
}
return ret;
}
/* Set a value for a complex component of SSA_NAME, return a
gimple_seq of stuff that needs doing. */
static gimple_seq
set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
{
complex_lattice_t lattice = find_lattice_value (ssa_name);
size_t ssa_name_index;
tree comp;
gimple *last;
gimple_seq list;
/* We know the value must be zero, else there's a bug in our lattice
analysis. But the value may well be a variable known to contain
zero. We should be safe ignoring it. */
if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
return NULL;
/* If we've already assigned an SSA_NAME to this component, then this
means that our walk of the basic blocks found a use before the set.
This is fine. Now we should create an initialization for the value
we created earlier. */
ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
comp = complex_ssa_name_components[ssa_name_index];
if (comp)
;
/* If we've nothing assigned, and the value we're given is already stable,
then install that as the value for this SSA_NAME. This preemptively
copy-propagates the value, which avoids unnecessary memory allocation. */
else if (is_gimple_min_invariant (value)
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
{
complex_ssa_name_components[ssa_name_index] = value;
return NULL;
}
else if (TREE_CODE (value) == SSA_NAME
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
{
/* Replace an anonymous base value with the variable from cvc_lookup.
This should result in better debug info. */
if (!SSA_NAME_IS_DEFAULT_DEF (value)
&& SSA_NAME_VAR (ssa_name)
&& (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
&& !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
{
comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
replace_ssa_name_symbol (value, comp);
}
complex_ssa_name_components[ssa_name_index] = value;
return NULL;
}
/* Finally, we need to stabilize the result by installing the value into
a new ssa name. */
else
comp = get_component_ssa_name (ssa_name, imag_p);
/* Do all the work to assign VALUE to COMP. */
list = NULL;
value = force_gimple_operand (value, &list, false, NULL);
last = gimple_build_assign (comp, value);
gimple_seq_add_stmt (&list, last);
gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
return list;
}
/* Extract the real or imaginary part of a complex variable or constant.
Make sure that it's a proper gimple_val and gimplify it if not.
Emit any new code before gsi. */
static tree
extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
bool gimple_p, bool phiarg_p = false)
{
switch (TREE_CODE (t))
{
case COMPLEX_CST:
return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
case COMPLEX_EXPR:
gcc_unreachable ();
case BIT_FIELD_REF:
{
tree inner_type = TREE_TYPE (TREE_TYPE (t));
t = unshare_expr (t);
TREE_TYPE (t) = inner_type;
TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
if (imagpart_p)
TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
TYPE_SIZE (inner_type));
if (gimple_p)
t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
GSI_SAME_STMT);
return t;
}
case VAR_DECL:
case RESULT_DECL:
case PARM_DECL:
case COMPONENT_REF:
case ARRAY_REF:
case VIEW_CONVERT_EXPR:
case MEM_REF:
{
tree inner_type = TREE_TYPE (TREE_TYPE (t));
t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
inner_type, unshare_expr (t));
if (gimple_p)
t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
GSI_SAME_STMT);
return t;
}
case SSA_NAME:
t = get_component_ssa_name (t, imagpart_p);
if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
gcc_assert (phiarg_p);
return t;
default:
gcc_unreachable ();
}
}
/* Update the complex components of the ssa name on the lhs of STMT. */
static void
update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
tree i)
{
tree lhs;
gimple_seq list;
lhs = gimple_get_lhs (stmt);
list = set_component_ssa_name (lhs, false, r);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
list = set_component_ssa_name (lhs, true, i);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
}
static void
update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
{
gimple_seq list;
list = set_component_ssa_name (lhs, false, r);
if (list)
gsi_insert_seq_on_edge (e, list);
list = set_component_ssa_name (lhs, true, i);
if (list)
gsi_insert_seq_on_edge (e, list);
}
/* Update an assignment to a complex variable in place. */
static void
update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
{
gimple *old_stmt = gsi_stmt (*gsi);
gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
gimple *stmt = gsi_stmt (*gsi);
update_stmt (stmt);
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
update_complex_components (gsi, gsi_stmt (*gsi), r, i);
}
/* Generate code at the entry point of the function to initialize the
component variables for a complex parameter. */
static void
update_parameter_components (void)
{
edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
tree parm;
for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
{
tree type = TREE_TYPE (parm);
tree ssa_name, r, i;
if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
continue;
type = TREE_TYPE (type);
ssa_name = ssa_default_def (cfun, parm);
if (!ssa_name)
continue;
r = build1 (REALPART_EXPR, type, ssa_name);
i = build1 (IMAGPART_EXPR, type, ssa_name);
update_complex_components_on_edge (entry_edge, ssa_name, r, i);
}
}
/* Generate code to set the component variables of a complex variable
to match the PHI statements in block BB. */
static void
update_phi_components (basic_block bb)
{
gphi_iterator gsi;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
if (is_complex_reg (gimple_phi_result (phi)))
{
gphi *p[2] = { NULL, NULL };
unsigned int i, j, n;
bool revisit_phi = false;
for (j = 0; j < 2; j++)
{
tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
if (TREE_CODE (l) == SSA_NAME)
p[j] = create_phi_node (l, bb);
}
for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
{
tree comp, arg = gimple_phi_arg_def (phi, i);
for (j = 0; j < 2; j++)
if (p[j])
{
comp = extract_component (NULL, arg, j > 0, false, true);
if (TREE_CODE (comp) == SSA_NAME
&& SSA_NAME_DEF_STMT (comp) == NULL)
{
/* For the benefit of any gimple simplification during
this pass that might walk SSA_NAME def stmts,
don't add SSA_NAMEs without definitions into the
PHI arguments, but put a decl in there instead
temporarily, and revisit this PHI later on. */
if (SSA_NAME_VAR (comp))
comp = SSA_NAME_VAR (comp);
else
comp = create_tmp_reg (TREE_TYPE (comp),
get_name (comp));
revisit_phi = true;
}
SET_PHI_ARG_DEF (p[j], i, comp);
}
}
if (revisit_phi)
{
phis_to_revisit.safe_push (phi);
phis_to_revisit.safe_push (p[0]);
phis_to_revisit.safe_push (p[1]);
}
}
}
}
/* Expand a complex move to scalars. */
static void
expand_complex_move (gimple_stmt_iterator *gsi, tree type)
{
tree inner_type = TREE_TYPE (type);
tree r, i, lhs, rhs;
gimple *stmt = gsi_stmt (*gsi);
if (is_gimple_assign (stmt))
{
lhs = gimple_assign_lhs (stmt);
if (gimple_num_ops (stmt) == 2)
rhs = gimple_assign_rhs1 (stmt);
else
rhs = NULL_TREE;
}
else if (is_gimple_call (stmt))
{
lhs = gimple_call_lhs (stmt);
rhs = NULL_TREE;
}
else
gcc_unreachable ();
if (TREE_CODE (lhs) == SSA_NAME)
{
if (is_ctrl_altering_stmt (stmt))
{
edge e;
/* The value is not assigned on the exception edges, so we need not
concern ourselves there. We do need to update on the fallthru
edge. Find it. */
e = find_fallthru_edge (gsi_bb (*gsi)->succs);
if (!e)
gcc_unreachable ();
r = build1 (REALPART_EXPR, inner_type, lhs);
i = build1 (IMAGPART_EXPR, inner_type, lhs);
update_complex_components_on_edge (e, lhs, r, i);
}
else if (is_gimple_call (stmt)
|| gimple_has_side_effects (stmt)
|| gimple_assign_rhs_code (stmt) == PAREN_EXPR)
{
r = build1 (REALPART_EXPR, inner_type, lhs);
i = build1 (IMAGPART_EXPR, inner_type, lhs);
update_complex_components (gsi, stmt, r, i);
}
else
{
if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
{
r = extract_component (gsi, rhs, 0, true);
i = extract_component (gsi, rhs, 1, true);
}
else
{
r = gimple_assign_rhs1 (stmt);
i = gimple_assign_rhs2 (stmt);
}
update_complex_assignment (gsi, r, i);
}
}
else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
{
tree x;
gimple *t;
location_t loc;
loc = gimple_location (stmt);
r = extract_component (gsi, rhs, 0, false);
i = extract_component (gsi, rhs, 1, false);
x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
t = gimple_build_assign (x, r);
gimple_set_location (t, loc);
gsi_insert_before (gsi, t, GSI_SAME_STMT);
if (stmt == gsi_stmt (*gsi))
{
x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
gimple_assign_set_lhs (stmt, x);
gimple_assign_set_rhs1 (stmt, i);
}
else
{
x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
t = gimple_build_assign (x, i);
gimple_set_location (t, loc);
gsi_insert_before (gsi, t, GSI_SAME_STMT);
stmt = gsi_stmt (*gsi);
gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
gimple_return_set_retval (as_a (stmt), lhs);
}
update_stmt (stmt);
}
}
/* Expand complex addition to scalars:
a + b = (ar + br) + i(ai + bi)
a - b = (ar - br) + i(ai + bi)
*/
static void
expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code,
complex_lattice_t al, complex_lattice_t bl)
{
tree rr, ri;
switch (PAIR (al, bl))
{
case PAIR (ONLY_REAL, ONLY_REAL):
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
ri = ai;
break;
case PAIR (ONLY_REAL, ONLY_IMAG):
rr = ar;
if (code == MINUS_EXPR)
ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
else
ri = bi;
break;
case PAIR (ONLY_IMAG, ONLY_REAL):
if (code == MINUS_EXPR)
rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
else
rr = br;
ri = ai;
break;
case PAIR (ONLY_IMAG, ONLY_IMAG):
rr = ar;
ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
break;
case PAIR (VARYING, ONLY_REAL):
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
ri = ai;
break;
case PAIR (VARYING, ONLY_IMAG):
rr = ar;
ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
break;
case PAIR (ONLY_REAL, VARYING):
if (code == MINUS_EXPR)
goto general;
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
ri = bi;
break;
case PAIR (ONLY_IMAG, VARYING):
if (code == MINUS_EXPR)
goto general;
rr = br;
ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
break;
case PAIR (VARYING, VARYING):
general:
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
break;
default:
gcc_unreachable ();
}
update_complex_assignment (gsi, rr, ri);
}
/* Expand a complex multiplication or division to a libcall to the c99
compliant routines. TYPE is the complex type of the operation.
If INPLACE_P replace the statement at GSI with
the libcall and return NULL_TREE. Else insert the call, assign its
result to an output variable and return that variable. If INPLACE_P
is true then the statement being replaced should be an assignment
statement. */
static tree
expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai,
tree br, tree bi, enum tree_code code, bool inplace_p)
{
machine_mode mode;
enum built_in_function bcode;
tree fn, lhs;
gcall *stmt;
mode = TYPE_MODE (type);
gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
if (code == MULT_EXPR)
bcode = ((enum built_in_function)
(BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
else if (code == RDIV_EXPR)
bcode = ((enum built_in_function)
(BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
else
gcc_unreachable ();
fn = builtin_decl_explicit (bcode);
stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
if (inplace_p)
{
gimple *old_stmt = gsi_stmt (*gsi);
gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt));
lhs = gimple_assign_lhs (old_stmt);
gimple_call_set_lhs (stmt, lhs);
gsi_replace (gsi, stmt, true);
type = TREE_TYPE (type);
if (stmt_can_throw_internal (cfun, stmt))
{
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
if (!(e->flags & EDGE_EH))
break;
basic_block bb = split_edge (e);
gimple_stmt_iterator gsi2 = gsi_start_bb (bb);
update_complex_components (&gsi2, stmt,
build1 (REALPART_EXPR, type, lhs),
build1 (IMAGPART_EXPR, type, lhs));
return NULL_TREE;
}
else
update_complex_components (gsi, stmt,
build1 (REALPART_EXPR, type, lhs),
build1 (IMAGPART_EXPR, type, lhs));
SSA_NAME_DEF_STMT (lhs) = stmt;
return NULL_TREE;
}
gimple_call_set_nothrow (stmt, true);
lhs = make_ssa_name (type);
gimple_call_set_lhs (stmt, lhs);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
return lhs;
}
/* Perform a complex multiplication on two complex constants A, B represented
by AR, AI, BR, BI of type TYPE.
The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai).
Insert the GIMPLE statements into GSI. Store the real and imaginary
components of the result into RR and RI. */
static void
expand_complex_multiplication_components (gimple_stmt_iterator *gsi,
tree type, tree ar, tree ai,
tree br, tree bi,
tree *rr, tree *ri)
{
tree t1, t2, t3, t4;
t1 = gimplify_build2 (gsi, MULT_EXPR, type, ar, br);
t2 = gimplify_build2 (gsi, MULT_EXPR, type, ai, bi);
t3 = gimplify_build2 (gsi, MULT_EXPR, type, ar, bi);
/* Avoid expanding redundant multiplication for the common
case of squaring a complex number. */
if (ar == br && ai == bi)
t4 = t3;
else
t4 = gimplify_build2 (gsi, MULT_EXPR, type, ai, br);
*rr = gimplify_build2 (gsi, MINUS_EXPR, type, t1, t2);
*ri = gimplify_build2 (gsi, PLUS_EXPR, type, t3, t4);
}
/* Expand complex multiplication to scalars:
a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
*/
static void
expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type,
tree ar, tree ai, tree br, tree bi,
complex_lattice_t al, complex_lattice_t bl)
{
tree rr, ri;
tree inner_type = TREE_TYPE (type);
if (al < bl)
{
complex_lattice_t tl;
rr = ar, ar = br, br = rr;
ri = ai, ai = bi, bi = ri;
tl = al, al = bl, bl = tl;
}
switch (PAIR (al, bl))
{
case PAIR (ONLY_REAL, ONLY_REAL):
rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
ri = ai;
break;
case PAIR (ONLY_IMAG, ONLY_REAL):
rr = ar;
if (TREE_CODE (ai) == REAL_CST
&& real_identical (&TREE_REAL_CST (ai), &dconst1))
ri = br;
else
ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
break;
case PAIR (ONLY_IMAG, ONLY_IMAG):
rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
ri = ar;
break;
case PAIR (VARYING, ONLY_REAL):
rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
break;
case PAIR (VARYING, ONLY_IMAG):
rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
break;
case PAIR (VARYING, VARYING):
if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
{
/* If optimizing for size or not at all just do a libcall.
Same if there are exception-handling edges or signaling NaNs. */
if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi))
|| stmt_can_throw_internal (cfun, gsi_stmt (*gsi))
|| flag_signaling_nans)
{
expand_complex_libcall (gsi, type, ar, ai, br, bi,
MULT_EXPR, true);
return;
}
if (!HONOR_NANS (inner_type))
{
/* If we are not worrying about NaNs expand to
(ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
expand_complex_multiplication_components (gsi, inner_type,
ar, ai, br, bi,
&rr, &ri);
break;
}
/* Else, expand x = a * b into
x = (ar*br - ai*bi) + i(ar*bi + br*ai);
if (isunordered (__real__ x, __imag__ x))
x = __muldc3 (a, b); */
tree tmpr, tmpi;
expand_complex_multiplication_components (gsi, inner_type, ar, ai,
br, bi, &tmpr, &tmpi);
gimple *check
= gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi,
NULL_TREE, NULL_TREE);
basic_block orig_bb = gsi_bb (*gsi);
/* We want to keep track of the original complex multiplication
statement as we're going to modify it later in
update_complex_assignment. Make sure that insert_cond_bb leaves
that statement in the join block. */
gsi_prev (gsi);
basic_block cond_bb
= insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check,
profile_probability::very_unlikely ());
gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb);
gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT);
tree libcall_res
= expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br,
bi, MULT_EXPR, false);
tree cond_real = gimplify_build1 (&cond_bb_gsi, REALPART_EXPR,
inner_type, libcall_res);
tree cond_imag = gimplify_build1 (&cond_bb_gsi, IMAGPART_EXPR,
inner_type, libcall_res);
basic_block join_bb = single_succ_edge (cond_bb)->dest;
*gsi = gsi_start_nondebug_after_labels_bb (join_bb);
/* We have a conditional block with some assignments in cond_bb.
Wire up the PHIs to wrap up. */
rr = make_ssa_name (inner_type);
ri = make_ssa_name (inner_type);
edge cond_to_join = single_succ_edge (cond_bb);
edge orig_to_join = find_edge (orig_bb, join_bb);
gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi));
add_phi_arg (real_phi, cond_real, cond_to_join, UNKNOWN_LOCATION);
add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION);
gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi));
add_phi_arg (imag_phi, cond_imag, cond_to_join, UNKNOWN_LOCATION);
add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION);
}
else
/* If we are not worrying about NaNs expand to
(ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
expand_complex_multiplication_components (gsi, inner_type, ar, ai,
br, bi, &rr, &ri);
break;
default:
gcc_unreachable ();
}
update_complex_assignment (gsi, rr, ri);
}
/* Keep this algorithm in sync with fold-const.c:const_binop().
Expand complex division to scalars, straightforward algorithm.
a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
t = br*br + bi*bi
*/
static void
expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code)
{
tree rr, ri, div, t1, t2, t3;
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
rr = gimplify_build2 (gsi, code, inner_type, t3, div);
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
ri = gimplify_build2 (gsi, code, inner_type, t3, div);
update_complex_assignment (gsi, rr, ri);
}
/* Keep this algorithm in sync with fold-const.c:const_binop().
Expand complex division to scalars, modified algorithm to minimize
overflow with wide input ranges. */
static void
expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code)
{
tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
basic_block bb_cond, bb_true, bb_false, bb_join;
gimple *stmt;
/* Examine |br| < |bi|, and branch. */
t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
LT_EXPR, boolean_type_node, t1, t2);
STRIP_NOPS (compare);
bb_cond = bb_true = bb_false = bb_join = NULL;
rr = ri = tr = ti = NULL;
if (TREE_CODE (compare) != INTEGER_CST)
{
edge e;
gimple *stmt;
tree cond, tmp;
tmp = make_ssa_name (boolean_type_node);
stmt = gimple_build_assign (tmp, compare);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
cond = fold_build2_loc (gimple_location (stmt),
EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
/* Split the original block, and create the TRUE and FALSE blocks. */
e = split_block (gsi_bb (*gsi), stmt);
bb_cond = e->src;
bb_join = e->dest;
bb_true = create_empty_bb (bb_cond);
bb_false = create_empty_bb (bb_true);
bb_true->count = bb_false->count
= bb_cond->count.apply_probability (profile_probability::even ());
/* Wire the blocks together. */
e->flags = EDGE_TRUE_VALUE;
/* TODO: With value profile we could add an historgram to determine real
branch outcome. */
e->probability = profile_probability::even ();
redirect_edge_succ (e, bb_true);
edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
e2->probability = profile_probability::even ();
make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
add_bb_to_loop (bb_true, bb_cond->loop_father);
add_bb_to_loop (bb_false, bb_cond->loop_father);
/* Update dominance info. Note that bb_join's data was
updated by split_block. */
if (dom_info_available_p (CDI_DOMINATORS))
{
set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
}
rr = create_tmp_reg (inner_type);
ri = create_tmp_reg (inner_type);
}
/* In the TRUE branch, we compute
ratio = br/bi;
div = (br * ratio) + bi;
tr = (ar * ratio) + ai;
ti = (ai * ratio) - ar;
tr = tr / div;
ti = ti / div; */
if (bb_true || integer_nonzerop (compare))
{
if (bb_true)
{
*gsi = gsi_last_bb (bb_true);
gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
}
ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
tr = gimplify_build2 (gsi, code, inner_type, tr, div);
ti = gimplify_build2 (gsi, code, inner_type, ti, div);
if (bb_true)
{
stmt = gimple_build_assign (rr, tr);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
stmt = gimple_build_assign (ri, ti);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
gsi_remove (gsi, true);
}
}
/* In the FALSE branch, we compute
ratio = d/c;
divisor = (d * ratio) + c;
tr = (b * ratio) + a;
ti = b - (a * ratio);
tr = tr / div;
ti = ti / div; */
if (bb_false || integer_zerop (compare))
{
if (bb_false)
{
*gsi = gsi_last_bb (bb_false);
gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
}
ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
tr = gimplify_build2 (gsi, code, inner_type, tr, div);
ti = gimplify_build2 (gsi, code, inner_type, ti, div);
if (bb_false)
{
stmt = gimple_build_assign (rr, tr);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
stmt = gimple_build_assign (ri, ti);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
gsi_remove (gsi, true);
}
}
if (bb_join)
*gsi = gsi_start_bb (bb_join);
else
rr = tr, ri = ti;
update_complex_assignment (gsi, rr, ri);
}
/* Expand complex division to scalars. */
static void
expand_complex_division (gimple_stmt_iterator *gsi, tree type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code,
complex_lattice_t al, complex_lattice_t bl)
{
tree rr, ri;
tree inner_type = TREE_TYPE (type);
switch (PAIR (al, bl))
{
case PAIR (ONLY_REAL, ONLY_REAL):
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
ri = ai;
break;
case PAIR (ONLY_REAL, ONLY_IMAG):
rr = ai;
ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
break;
case PAIR (ONLY_IMAG, ONLY_REAL):
rr = ar;
ri = gimplify_build2 (gsi, code, inner_type, ai, br);
break;
case PAIR (ONLY_IMAG, ONLY_IMAG):
rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
ri = ar;
break;
case PAIR (VARYING, ONLY_REAL):
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
ri = gimplify_build2 (gsi, code, inner_type, ai, br);
break;
case PAIR (VARYING, ONLY_IMAG):
rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
break;
case PAIR (ONLY_REAL, VARYING):
case PAIR (ONLY_IMAG, VARYING):
case PAIR (VARYING, VARYING):
switch (flag_complex_method)
{
case 0:
/* straightforward implementation of complex divide acceptable. */
expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
break;
case 2:
if (SCALAR_FLOAT_TYPE_P (inner_type))
{
expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true);
break;
}
/* FALLTHRU */
case 1:
/* wide ranges of inputs must work for complex divide. */
expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
break;
default:
gcc_unreachable ();
}
return;
default:
gcc_unreachable ();
}
update_complex_assignment (gsi, rr, ri);
}
/* Expand complex negation to scalars:
-a = (-ar) + i(-ai)
*/
static void
expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai)
{
tree rr, ri;
rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
update_complex_assignment (gsi, rr, ri);
}
/* Expand complex conjugate to scalars:
~a = (ar) + i(-ai)
*/
static void
expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai)
{
tree ri;
ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
update_complex_assignment (gsi, ar, ri);
}
/* Expand complex comparison (EQ or NE only). */
static void
expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
tree br, tree bi, enum tree_code code)
{
tree cr, ci, cc, type;
gimple *stmt;
cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
cc = gimplify_build2 (gsi,
(code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
boolean_type_node, cr, ci);
stmt = gsi_stmt (*gsi);
switch (gimple_code (stmt))
{
case GIMPLE_RETURN:
{
greturn *return_stmt = as_a (stmt);
type = TREE_TYPE (gimple_return_retval (return_stmt));
gimple_return_set_retval (return_stmt, fold_convert (type, cc));
}
break;
case GIMPLE_ASSIGN:
type = TREE_TYPE (gimple_assign_lhs (stmt));
gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
stmt = gsi_stmt (*gsi);
break;
case GIMPLE_COND:
{
gcond *cond_stmt = as_a (stmt);
gimple_cond_set_code (cond_stmt, EQ_EXPR);
gimple_cond_set_lhs (cond_stmt, cc);
gimple_cond_set_rhs (cond_stmt, boolean_true_node);
}
break;
default:
gcc_unreachable ();
}
update_stmt (stmt);
if (maybe_clean_eh_stmt (stmt))
bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
}
/* Expand inline asm that sets some complex SSA_NAMEs. */
static void
expand_complex_asm (gimple_stmt_iterator *gsi)
{
gasm *stmt = as_a (gsi_stmt (*gsi));
unsigned int i;
for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
{
tree link = gimple_asm_output_op (stmt, i);
tree op = TREE_VALUE (link);
if (TREE_CODE (op) == SSA_NAME
&& TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
{
tree type = TREE_TYPE (op);
tree inner_type = TREE_TYPE (type);
tree r = build1 (REALPART_EXPR, inner_type, op);
tree i = build1 (IMAGPART_EXPR, inner_type, op);
gimple_seq list = set_component_ssa_name (op, false, r);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
list = set_component_ssa_name (op, true, i);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
}
}
}
/* Process one statement. If we identify a complex operation, expand it. */
static void
expand_complex_operations_1 (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree type, inner_type, lhs;
tree ac, ar, ai, bc, br, bi;
complex_lattice_t al, bl;
enum tree_code code;
if (gimple_code (stmt) == GIMPLE_ASM)
{
expand_complex_asm (gsi);
return;
}
lhs = gimple_get_lhs (stmt);
if (!lhs && gimple_code (stmt) != GIMPLE_COND)
return;
type = TREE_TYPE (gimple_op (stmt, 0));
code = gimple_expr_code (stmt);
/* Initial filter for operations we handle. */
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
case NEGATE_EXPR:
case CONJ_EXPR:
if (TREE_CODE (type) != COMPLEX_TYPE)
return;
inner_type = TREE_TYPE (type);
break;
case EQ_EXPR:
case NE_EXPR:
/* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
subcode, so we need to access the operands using gimple_op. */
inner_type = TREE_TYPE (gimple_op (stmt, 1));
if (TREE_CODE (inner_type) != COMPLEX_TYPE)
return;
break;
default:
{
tree rhs;
/* GIMPLE_COND may also fallthru here, but we do not need to
do anything with it. */
if (gimple_code (stmt) == GIMPLE_COND)
return;
if (TREE_CODE (type) == COMPLEX_TYPE)
expand_complex_move (gsi, type);
else if (is_gimple_assign (stmt)
&& (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
&& TREE_CODE (lhs) == SSA_NAME)
{
rhs = gimple_assign_rhs1 (stmt);
rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
gimple_assign_rhs_code (stmt)
== IMAGPART_EXPR,
false);
gimple_assign_set_rhs_from_tree (gsi, rhs);
stmt = gsi_stmt (*gsi);
update_stmt (stmt);
}
}
return;
}
/* Extract the components of the two complex values. Make sure and
handle the common case of the same value used twice specially. */
if (is_gimple_assign (stmt))
{
ac = gimple_assign_rhs1 (stmt);
bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
}
/* GIMPLE_CALL cannot get here. */
else
{
ac = gimple_cond_lhs (stmt);
bc = gimple_cond_rhs (stmt);
}
ar = extract_component (gsi, ac, false, true);
ai = extract_component (gsi, ac, true, true);
if (ac == bc)
br = ar, bi = ai;
else if (bc)
{
br = extract_component (gsi, bc, 0, true);
bi = extract_component (gsi, bc, 1, true);
}
else
br = bi = NULL_TREE;
al = find_lattice_value (ac);
if (al == UNINITIALIZED)
al = VARYING;
if (TREE_CODE_CLASS (code) == tcc_unary)
bl = UNINITIALIZED;
else if (ac == bc)
bl = al;
else
{
bl = find_lattice_value (bc);
if (bl == UNINITIALIZED)
bl = VARYING;
}
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
break;
case MULT_EXPR:
expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl);
break;
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl);
break;
case NEGATE_EXPR:
expand_complex_negation (gsi, inner_type, ar, ai);
break;
case CONJ_EXPR:
expand_complex_conjugate (gsi, inner_type, ar, ai);
break;
case EQ_EXPR:
case NE_EXPR:
expand_complex_comparison (gsi, ar, ai, br, bi, code);
break;
default:
gcc_unreachable ();
}
}
/* Entry point for complex operation lowering during optimization. */
static unsigned int
tree_lower_complex (void)
{
gimple_stmt_iterator gsi;
basic_block bb;
int n_bbs, i;
int *rpo;
if (!init_dont_simulate_again ())
return 0;
complex_lattice_values.create (num_ssa_names);
complex_lattice_values.safe_grow_cleared (num_ssa_names);
init_parameter_lattice_values ();
class complex_propagate complex_propagate;
complex_propagate.ssa_propagate ();
need_eh_cleanup = BITMAP_ALLOC (NULL);
complex_variable_components = new int_tree_htab_type (10);
complex_ssa_name_components.create (2 * num_ssa_names);
complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
update_parameter_components ();
rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
for (i = 0; i < n_bbs; i++)
{
bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
if (!bb)
continue;
update_phi_components (bb);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
expand_complex_operations_1 (&gsi);
}
free (rpo);
if (!phis_to_revisit.is_empty ())
{
unsigned int n = phis_to_revisit.length ();
for (unsigned int j = 0; j < n; j += 3)
for (unsigned int k = 0; k < 2; k++)
if (gphi *phi = phis_to_revisit[j + k + 1])
{
unsigned int m = gimple_phi_num_args (phi);
for (unsigned int l = 0; l < m; ++l)
{
tree op = gimple_phi_arg_def (phi, l);
if (TREE_CODE (op) == SSA_NAME
|| is_gimple_min_invariant (op))
continue;
tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
op = extract_component (NULL, arg, k > 0, false, false);
SET_PHI_ARG_DEF (phi, l, op);
}
}
phis_to_revisit.release ();
}
gsi_commit_edge_inserts ();
unsigned todo
= gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0;
BITMAP_FREE (need_eh_cleanup);
delete complex_variable_components;
complex_variable_components = NULL;
complex_ssa_name_components.release ();
complex_lattice_values.release ();
return todo;
}
namespace {
const pass_data pass_data_lower_complex =
{
GIMPLE_PASS, /* type */
"cplxlower", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
PROP_gimple_lcx, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_lower_complex : public gimple_opt_pass
{
public:
pass_lower_complex (gcc::context *ctxt)
: gimple_opt_pass (pass_data_lower_complex, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
virtual unsigned int execute (function *) { return tree_lower_complex (); }
}; // class pass_lower_complex
} // anon namespace
gimple_opt_pass *
make_pass_lower_complex (gcc::context *ctxt)
{
return new pass_lower_complex (ctxt);
}
namespace {
const pass_data pass_data_lower_complex_O0 =
{
GIMPLE_PASS, /* type */
"cplxlower0", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_cfg, /* properties_required */
PROP_gimple_lcx, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_lower_complex_O0 : public gimple_opt_pass
{
public:
pass_lower_complex_O0 (gcc::context *ctxt)
: gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *fun)
{
/* With errors, normal optimization passes are not run. If we don't
lower complex operations at all, rtl expansion will abort. */
return !(fun->curr_properties & PROP_gimple_lcx);
}
virtual unsigned int execute (function *) { return tree_lower_complex (); }
}; // class pass_lower_complex_O0
} // anon namespace
gimple_opt_pass *
make_pass_lower_complex_O0 (gcc::context *ctxt)
{
return new pass_lower_complex_O0 (ctxt);
}