# Pretty-printers for libstdc++.
# Copyright (C) 2008-2022 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see .
import gdb
import itertools
import re
import sys
import os
import errno
# Python 2 + Python 3 compatibility code
# Resources about compatibility:
#
# * : Documentation of the "six" module
# FIXME: The handling of e.g. std::basic_string (at least on char)
# probably needs updating to work with Python 3's new string rules.
#
# In particular, Python 3 has a separate type (called byte) for
# bytestrings, and a special b"" syntax for the byte literals; the old
# str() type has been redefined to always store Unicode text.
#
# We probably can't do much about this until this GDB PR is addressed:
#
if sys.version_info[0] > 2:
# Python 3 stuff
Iterator = object
# Python 3 folds these into the normal functions.
imap = map
izip = zip
# Also, int subsumes long
long = int
else:
# Python 2 stuff
class Iterator:
"""Compatibility mixin for iterators
Instead of writing next() methods for iterators, write
__next__() methods and use this mixin to make them work in
Python 2 as well as Python 3.
Idea stolen from the "six" documentation:
"""
def next(self):
return self.__next__()
# In Python 2, we still need these from itertools
from itertools import imap, izip
# Try to use the new-style pretty-printing if available.
_use_gdb_pp = True
try:
import gdb.printing
except ImportError:
_use_gdb_pp = False
# Try to install type-printers.
_use_type_printing = False
try:
import gdb.types
if hasattr(gdb.types, 'TypePrinter'):
_use_type_printing = True
except ImportError:
pass
# Starting with the type ORIG, search for the member type NAME. This
# handles searching upward through superclasses. This is needed to
# work around http://sourceware.org/bugzilla/show_bug.cgi?id=13615.
def find_type(orig, name):
typ = orig.strip_typedefs()
while True:
# Use Type.tag to ignore cv-qualifiers. PR 67440.
search = '%s::%s' % (typ.tag, name)
try:
return gdb.lookup_type(search)
except RuntimeError:
pass
# The type was not found, so try the superclass. We only need
# to check the first superclass, so we don't bother with
# anything fancier here.
fields = typ.fields()
if len(fields) and fields[0].is_base_class:
typ = fields[0].type
else:
raise ValueError("Cannot find type %s::%s" % (str(orig), name))
_versioned_namespace = '__8::'
def lookup_templ_spec(templ, *args):
"""
Lookup template specialization templ.
"""
t = '{}<{}>'.format(templ, ', '.join([str(a) for a in args]))
try:
return gdb.lookup_type(t)
except gdb.error as e:
# Type not found, try again in versioned namespace.
global _versioned_namespace
if _versioned_namespace not in templ:
t = t.replace('::', '::' + _versioned_namespace, 1)
try:
return gdb.lookup_type(t)
except gdb.error:
# If that also fails, rethrow the original exception
pass
raise e
# Use this to find container node types instead of find_type,
# see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91997 for details.
def lookup_node_type(nodename, containertype):
"""
Lookup specialization of template nodename corresponding to containertype.
nodename - The name of a class template, as a String
containertype - The container, as a gdb.Type
Return a gdb.Type for the corresponding specialization of nodename,
or None if the type cannot be found.
e.g. lookup_node_type('_List_node', gdb.lookup_type('std::list'))
will return a gdb.Type for the type std::_List_node.
"""
# If nodename is unqualified, assume it's in namespace std.
if '::' not in nodename:
nodename = 'std::' + nodename
# Use either containertype's value_type or its first template argument.
try:
valtype = find_type(containertype, 'value_type')
except:
valtype = containertype.template_argument(0)
valtype = valtype.strip_typedefs()
try:
return lookup_templ_spec(nodename, valtype)
except gdb.error as e:
# For debug mode containers the node is in std::__cxx1998.
if is_member_of_namespace(nodename, 'std'):
if is_member_of_namespace(containertype, 'std::__cxx1998',
'std::__debug', '__gnu_debug'):
nodename = nodename.replace('::', '::__cxx1998::', 1)
try:
return lookup_templ_spec(nodename, valtype)
except gdb.error:
pass
return None
def is_member_of_namespace(typ, *namespaces):
"""
Test whether a type is a member of one of the specified namespaces.
The type can be specified as a string or a gdb.Type object.
"""
if isinstance(typ, gdb.Type):
typ = str(typ)
typ = strip_versioned_namespace(typ)
for namespace in namespaces:
if typ.startswith(namespace + '::'):
return True
return False
def is_specialization_of(x, template_name):
"Test if a type is a given template instantiation."
global _versioned_namespace
if isinstance(x, gdb.Type):
x = x.tag
template_name = '(%s)?%s' % (_versioned_namespace, template_name)
return re.match('^std::%s<.*>$' % template_name, x) is not None
def strip_versioned_namespace(typename):
global _versioned_namespace
return typename.replace(_versioned_namespace, '')
def strip_inline_namespaces(type_str):
"""Remove known inline namespaces from the canonical name of a type."""
type_str = strip_versioned_namespace(type_str)
type_str = type_str.replace('std::__cxx11::', 'std::')
expt_ns = 'std::experimental::'
for lfts_ns in ('fundamentals_v1', 'fundamentals_v2'):
type_str = type_str.replace(expt_ns + lfts_ns + '::', expt_ns)
fs_ns = expt_ns + 'filesystem::'
type_str = type_str.replace(fs_ns + 'v1::', fs_ns)
return type_str
def get_template_arg_list(type_obj):
"""Return a type's template arguments as a list."""
n = 0
template_args = []
while True:
try:
template_args.append(type_obj.template_argument(n))
except:
return template_args
n += 1
class SmartPtrIterator(Iterator):
"""An iterator for smart pointer types with a single 'child' value."""
def __init__(self, val):
self.val = val
def __iter__(self):
return self
def __next__(self):
if self.val is None:
raise StopIteration
self.val, val = None, self.val
return ('get()', val)
class SharedPointerPrinter:
"""
Print a shared_ptr, weak_ptr, atomic, or atomic.
"""
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
self.pointer = val['_M_ptr']
def children(self):
return SmartPtrIterator(self.pointer)
# Return the _Sp_counted_base<>* that holds the refcounts.
def _get_refcounts(self):
if self.typename == 'std::atomic':
# A tagged pointer is stored as uintptr_t.
ptr_val = self.val['_M_refcount']['_M_val']['_M_i']
ptr_val = ptr_val - (ptr_val % 2) # clear lock bit
ptr_type = find_type(self.val['_M_refcount'].type, 'pointer')
return ptr_val.cast(ptr_type)
return self.val['_M_refcount']['_M_pi']
def to_string(self):
state = 'empty'
refcounts = self._get_refcounts()
targ = self.val.type.template_argument(0)
targ = strip_versioned_namespace(str(targ))
if refcounts != 0:
usecount = refcounts['_M_use_count']
weakcount = refcounts['_M_weak_count']
if usecount == 0:
state = 'expired, weak count %d' % weakcount
else:
state = 'use count %d, weak count %d' % (
usecount, weakcount - 1)
return '%s<%s> (%s)' % (self.typename, targ, state)
def _tuple_impl_get(val):
"""Return the tuple element stored in a _Tuple_impl base class."""
bases = val.type.fields()
if not bases[-1].is_base_class:
raise ValueError(
"Unsupported implementation for std::tuple: %s" % str(val.type))
# Get the _Head_base base class:
head_base = val.cast(bases[-1].type)
fields = head_base.type.fields()
if len(fields) == 0:
raise ValueError(
"Unsupported implementation for std::tuple: %s" % str(val.type))
if fields[0].name == '_M_head_impl':
# The tuple element is the _Head_base::_M_head_impl data member.
return head_base['_M_head_impl']
elif fields[0].is_base_class:
# The tuple element is an empty base class of _Head_base.
# Cast to that empty base class.
return head_base.cast(fields[0].type)
else:
raise ValueError(
"Unsupported implementation for std::tuple: %s" % str(val.type))
def tuple_get(n, val):
"""Return the result of std::get(val) on a std::tuple."""
tuple_size = len(get_template_arg_list(val.type))
if n > tuple_size:
raise ValueError("Out of range index for std::get on std::tuple")
# Get the first _Tuple_impl<0, T...> base class:
node = val.cast(val.type.fields()[0].type)
while n > 0:
# Descend through the base classes until the Nth one.
node = node.cast(node.type.fields()[0].type)
n -= 1
return _tuple_impl_get(node)
def unique_ptr_get(val):
"""Return the result of val.get() on a std::unique_ptr."""
# std::unique_ptr contains a std::tuple,
# either as a direct data member _M_t (the old implementation)
# or within a data member of type __uniq_ptr_data.
impl_type = val.type.fields()[0].type.strip_typedefs()
# Check for new implementations first:
if is_specialization_of(impl_type, '__uniq_ptr_data') \
or is_specialization_of(impl_type, '__uniq_ptr_impl'):
tuple_member = val['_M_t']['_M_t']
elif is_specialization_of(impl_type, 'tuple'):
tuple_member = val['_M_t']
else:
raise ValueError(
"Unsupported implementation for unique_ptr: %s" % str(impl_type))
return tuple_get(0, tuple_member)
class UniquePointerPrinter:
"""Print a unique_ptr."""
def __init__(self, typename, val):
self.val = val
def children(self):
return SmartPtrIterator(unique_ptr_get(self.val))
def to_string(self):
t = self.val.type.template_argument(0)
return 'std::unique_ptr<{}>'.format(str(t))
def get_value_from_aligned_membuf(buf, valtype):
"""Return the value held in a __gnu_cxx::__aligned_membuf."""
return buf['_M_storage'].address.cast(valtype.pointer()).dereference()
def get_value_from_list_node(node):
"""Return the value held in an _List_node<_Val>."""
try:
member = node.type.fields()[1].name
if member == '_M_data':
# C++03 implementation, node contains the value as a member
return node['_M_data']
elif member == '_M_storage':
# C++11 implementation, node stores value in __aligned_membuf
valtype = node.type.template_argument(0)
return get_value_from_aligned_membuf(node['_M_storage'], valtype)
except:
pass
raise ValueError("Unsupported implementation for %s" % str(node.type))
class StdListPrinter:
"""Print a std::list."""
class _iterator(Iterator):
def __init__(self, nodetype, head):
self.nodetype = nodetype
self.base = head['_M_next']
self.head = head.address
self.count = 0
def __iter__(self):
return self
def __next__(self):
if self.base == self.head:
raise StopIteration
elt = self.base.cast(self.nodetype).dereference()
self.base = elt['_M_next']
count = self.count
self.count = self.count + 1
val = get_value_from_list_node(elt)
return ('[%d]' % count, val)
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
def children(self):
nodetype = lookup_node_type('_List_node', self.val.type).pointer()
return self._iterator(nodetype, self.val['_M_impl']['_M_node'])
def to_string(self):
headnode = self.val['_M_impl']['_M_node']
if headnode['_M_next'] == headnode.address:
return 'empty %s' % (self.typename)
return '%s' % (self.typename)
class NodeIteratorPrinter:
def __init__(self, typename, val, contname, nodename):
self.val = val
self.typename = typename
self.contname = contname
self.nodetype = lookup_node_type(nodename, val.type)
def to_string(self):
if not self.val['_M_node']:
return 'non-dereferenceable iterator for std::%s' % (self.contname)
node = self.val['_M_node'].cast(self.nodetype.pointer()).dereference()
return str(get_value_from_list_node(node))
class StdListIteratorPrinter(NodeIteratorPrinter):
"""Print std::list::iterator."""
def __init__(self, typename, val):
NodeIteratorPrinter.__init__(self, typename, val, 'list', '_List_node')
class StdFwdListIteratorPrinter(NodeIteratorPrinter):
"""Print std::forward_list::iterator."""
def __init__(self, typename, val):
NodeIteratorPrinter.__init__(self, typename, val, 'forward_list',
'_Fwd_list_node')
class StdSlistPrinter:
"""Print a __gnu_cxx::slist."""
class _iterator(Iterator):
def __init__(self, nodetype, head):
self.nodetype = nodetype
self.base = head['_M_head']['_M_next']
self.count = 0
def __iter__(self):
return self
def __next__(self):
if self.base == 0:
raise StopIteration
elt = self.base.cast(self.nodetype).dereference()
self.base = elt['_M_next']
count = self.count
self.count = self.count + 1
return ('[%d]' % count, elt['_M_data'])
def __init__(self, typename, val):
self.val = val
def children(self):
nodetype = lookup_node_type('__gnu_cxx::_Slist_node', self.val.type)
return self._iterator(nodetype.pointer(), self.val)
def to_string(self):
if self.val['_M_head']['_M_next'] == 0:
return 'empty __gnu_cxx::slist'
return '__gnu_cxx::slist'
class StdSlistIteratorPrinter:
"""Print __gnu_cxx::slist::iterator."""
def __init__(self, typename, val):
self.val = val
def to_string(self):
if not self.val['_M_node']:
return 'non-dereferenceable iterator for __gnu_cxx::slist'
nodetype = lookup_node_type(
'__gnu_cxx::_Slist_node', self.val.type).pointer()
return str(self.val['_M_node'].cast(nodetype).dereference()['_M_data'])
class StdVectorPrinter:
"""Print a std::vector."""
class _iterator(Iterator):
def __init__(self, start, finish, bitvec):
self.bitvec = bitvec
if bitvec:
self.item = start['_M_p']
self.so = 0
self.finish = finish['_M_p']
self.fo = finish['_M_offset']
itype = self.item.dereference().type
self.isize = 8 * itype.sizeof
else:
self.item = start
self.finish = finish
self.count = 0
def __iter__(self):
return self
def __next__(self):
count = self.count
self.count = self.count + 1
if self.bitvec:
if self.item == self.finish and self.so >= self.fo:
raise StopIteration
elt = bool(self.item.dereference() & (1 << self.so))
self.so = self.so + 1
if self.so >= self.isize:
self.item = self.item + 1
self.so = 0
return ('[%d]' % count, elt)
else:
if self.item == self.finish:
raise StopIteration
elt = self.item.dereference()
self.item = self.item + 1
return ('[%d]' % count, elt)
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
self.is_bool = val.type.template_argument(0).code == gdb.TYPE_CODE_BOOL
def children(self):
return self._iterator(self.val['_M_impl']['_M_start'],
self.val['_M_impl']['_M_finish'],
self.is_bool)
def to_string(self):
start = self.val['_M_impl']['_M_start']
finish = self.val['_M_impl']['_M_finish']
end = self.val['_M_impl']['_M_end_of_storage']
if self.is_bool:
start = self.val['_M_impl']['_M_start']['_M_p']
finish = self.val['_M_impl']['_M_finish']['_M_p']
fo = self.val['_M_impl']['_M_finish']['_M_offset']
itype = start.dereference().type
bl = 8 * itype.sizeof
length = bl * (finish - start) + fo
capacity = bl * (end - start)
return ('%s of length %d, capacity %d'
% (self.typename, int(length), int(capacity)))
else:
return ('%s of length %d, capacity %d'
% (self.typename, int(finish - start), int(end - start)))
def display_hint(self):
return 'array'
class StdVectorIteratorPrinter:
"""Print std::vector::iterator."""
def __init__(self, typename, val):
self.val = val
def to_string(self):
if not self.val['_M_current']:
return 'non-dereferenceable iterator for std::vector'
return str(self.val['_M_current'].dereference())
class StdBitIteratorPrinter:
"""Print std::vector's _Bit_iterator and _Bit_const_iterator."""
def __init__(self, typename, val):
self.val = val
def to_string(self):
if not self.val['_M_p']:
return 'non-dereferenceable iterator for std::vector'
return bool(self.val['_M_p'].dereference()
& (1 << self.val['_M_offset']))
class StdBitReferencePrinter:
"""Print std::vector::reference."""
def __init__(self, typename, val):
self.val = val
def to_string(self):
if not self.val['_M_p']:
return 'invalid std::vector::reference'
return bool(self.val['_M_p'].dereference() & (self.val['_M_mask']))
class StdTuplePrinter:
"""Print a std::tuple."""
class _iterator(Iterator):
@staticmethod
def _is_nonempty_tuple(nodes):
if len(nodes) == 2:
if is_specialization_of(nodes[1].type, '__tuple_base'):
return True
elif len(nodes) == 1:
return True
elif len(nodes) == 0:
return False
raise ValueError(
"Top of tuple tree does not consist of a single node.")
def __init__(self, head):
self.head = head
# Set the base class as the initial head of the
# tuple.
nodes = self.head.type.fields()
if self._is_nonempty_tuple(nodes):
# Set the actual head to the first pair.
self.head = self.head.cast(nodes[0].type)
self.count = 0
def __iter__(self):
return self
def __next__(self):
# Check for further recursions in the inheritance tree.
# For a GCC 5+ tuple self.head is None after visiting all nodes:
if not self.head:
raise StopIteration
nodes = self.head.type.fields()
# For a GCC 4.x tuple there is a final node with no fields:
if len(nodes) == 0:
raise StopIteration
# Check that this iteration has an expected structure.
if len(nodes) > 2:
raise ValueError(
"Cannot parse more than 2 nodes in a tuple tree.")
if len(nodes) == 1:
# This is the last node of a GCC 5+ std::tuple.
impl = self.head.cast(nodes[0].type)
self.head = None
else:
# Either a node before the last node, or the last node of
# a GCC 4.x tuple (which has an empty parent).
# - Left node is the next recursion parent.
# - Right node is the actual class contained in the tuple.
# Process right node.
impl = self.head.cast(nodes[1].type)
# Process left node and set it as head.
self.head = self.head.cast(nodes[0].type)
self.count = self.count + 1
# Finally, check the implementation. If it is
# wrapped in _M_head_impl return that, otherwise return
# the value "as is".
fields = impl.type.fields()
if len(fields) < 1 or fields[0].name != "_M_head_impl":
return ('[%d]' % self.count, impl)
else:
return ('[%d]' % self.count, impl['_M_head_impl'])
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
def children(self):
return self._iterator(self.val)
def to_string(self):
if len(self.val.type.fields()) == 0:
return 'empty %s' % (self.typename)
return '%s containing' % (self.typename)
class StdStackOrQueuePrinter:
"""Print a std::stack or std::queue."""
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.visualizer = gdb.default_visualizer(val['c'])
def children(self):
return self.visualizer.children()
def to_string(self):
return '%s wrapping: %s' % (self.typename,
self.visualizer.to_string())
def display_hint(self):
if hasattr(self.visualizer, 'display_hint'):
return self.visualizer.display_hint()
return None
class RbtreeIterator(Iterator):
"""
Turn an RB-tree-based container (std::map, std::set etc.) into
a Python iterable object.
"""
def __init__(self, rbtree):
self.size = rbtree['_M_t']['_M_impl']['_M_node_count']
self.node = rbtree['_M_t']['_M_impl']['_M_header']['_M_left']
self.count = 0
def __iter__(self):
return self
def __len__(self):
return int(self.size)
def __next__(self):
if self.count == self.size:
raise StopIteration
result = self.node
self.count = self.count + 1
if self.count < self.size:
# Compute the next node.
node = self.node
if node.dereference()['_M_right']:
node = node.dereference()['_M_right']
while node.dereference()['_M_left']:
node = node.dereference()['_M_left']
else:
parent = node.dereference()['_M_parent']
while node == parent.dereference()['_M_right']:
node = parent
parent = parent.dereference()['_M_parent']
if node.dereference()['_M_right'] != parent:
node = parent
self.node = node
return result
def get_value_from_Rb_tree_node(node):
"""Return the value held in an _Rb_tree_node<_Val>."""
try:
member = node.type.fields()[1].name
if member == '_M_value_field':
# C++03 implementation, node contains the value as a member
return node['_M_value_field']
elif member == '_M_storage':
# C++11 implementation, node stores value in __aligned_membuf
valtype = node.type.template_argument(0)
return get_value_from_aligned_membuf(node['_M_storage'], valtype)
except:
pass
raise ValueError("Unsupported implementation for %s" % str(node.type))
# This is a pretty printer for std::_Rb_tree_iterator (which is
# std::map::iterator), and has nothing to do with the RbtreeIterator
# class above.
class StdRbtreeIteratorPrinter:
"""Print std::map::iterator, std::set::iterator, etc."""
def __init__(self, typename, val):
self.val = val
nodetype = lookup_node_type('_Rb_tree_node', self.val.type)
self.link_type = nodetype.pointer()
def to_string(self):
if not self.val['_M_node']:
return 'non-dereferenceable iterator for associative container'
node = self.val['_M_node'].cast(self.link_type).dereference()
return str(get_value_from_Rb_tree_node(node))
class StdDebugIteratorPrinter:
"""Print a debug enabled version of an iterator."""
def __init__(self, typename, val):
self.val = val
# Just strip away the encapsulating __gnu_debug::_Safe_iterator
# and return the wrapped iterator value.
def to_string(self):
base_type = gdb.lookup_type('__gnu_debug::_Safe_iterator_base')
itype = self.val.type.template_argument(0)
safe_seq = self.val.cast(base_type)['_M_sequence']
if not safe_seq:
return str(self.val.cast(itype))
if self.val['_M_version'] != safe_seq['_M_version']:
return "invalid iterator"
return str(self.val.cast(itype))
def num_elements(num):
"""Return either "1 element" or "N elements" depending on the argument."""
return '1 element' if num == 1 else '%d elements' % num
class StdMapPrinter:
"""Print a std::map or std::multimap."""
# Turn an RbtreeIterator into a pretty-print iterator.
class _iter(Iterator):
def __init__(self, rbiter, type):
self.rbiter = rbiter
self.count = 0
self.type = type
def __iter__(self):
return self
def __next__(self):
if self.count % 2 == 0:
n = next(self.rbiter)
n = n.cast(self.type).dereference()
n = get_value_from_Rb_tree_node(n)
self.pair = n
item = n['first']
else:
item = self.pair['second']
result = ('[%d]' % self.count, item)
self.count = self.count + 1
return result
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
def to_string(self):
return '%s with %s' % (self.typename,
num_elements(len(RbtreeIterator(self.val))))
def children(self):
node = lookup_node_type('_Rb_tree_node', self.val.type).pointer()
return self._iter(RbtreeIterator(self.val), node)
def display_hint(self):
return 'map'
class StdSetPrinter:
"""Print a std::set or std::multiset."""
# Turn an RbtreeIterator into a pretty-print iterator.
class _iter(Iterator):
def __init__(self, rbiter, type):
self.rbiter = rbiter
self.count = 0
self.type = type
def __iter__(self):
return self
def __next__(self):
item = next(self.rbiter)
item = item.cast(self.type).dereference()
item = get_value_from_Rb_tree_node(item)
# FIXME: this is weird ... what to do?
# Maybe a 'set' display hint?
result = ('[%d]' % self.count, item)
self.count = self.count + 1
return result
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
def to_string(self):
return '%s with %s' % (self.typename,
num_elements(len(RbtreeIterator(self.val))))
def children(self):
node = lookup_node_type('_Rb_tree_node', self.val.type).pointer()
return self._iter(RbtreeIterator(self.val), node)
class StdBitsetPrinter:
"""Print a std::bitset."""
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
def to_string(self):
# If template_argument handled values, we could print the
# size. Or we could use a regexp on the type.
return '%s' % (self.typename)
def children(self):
try:
# An empty bitset may not have any members which will
# result in an exception being thrown.
words = self.val['_M_w']
except:
return []
wtype = words.type
# The _M_w member can be either an unsigned long, or an
# array. This depends on the template specialization used.
# If it is a single long, convert to a single element list.
if wtype.code == gdb.TYPE_CODE_ARRAY:
tsize = wtype.target().sizeof
else:
words = [words]
tsize = wtype.sizeof
nwords = wtype.sizeof / tsize
result = []
byte = 0
while byte < nwords:
w = words[byte]
bit = 0
while w != 0:
if (w & 1) != 0:
# Another spot where we could use 'set'?
result.append(('[%d]' % (byte * tsize * 8 + bit), 1))
bit = bit + 1
w = w >> 1
byte = byte + 1
return result
class StdDequePrinter:
"""Print a std::deque."""
class _iter(Iterator):
def __init__(self, node, start, end, last, buffer_size):
self.node = node
self.p = start
self.end = end
self.last = last
self.buffer_size = buffer_size
self.count = 0
def __iter__(self):
return self
def __next__(self):
if self.p == self.last:
raise StopIteration
result = ('[%d]' % self.count, self.p.dereference())
self.count = self.count + 1
# Advance the 'cur' pointer.
self.p = self.p + 1
if self.p == self.end:
# If we got to the end of this bucket, move to the
# next bucket.
self.node = self.node + 1
self.p = self.node[0]
self.end = self.p + self.buffer_size
return result
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
self.elttype = val.type.template_argument(0)
size = self.elttype.sizeof
if size < 512:
self.buffer_size = int(512 / size)
else:
self.buffer_size = 1
def to_string(self):
start = self.val['_M_impl']['_M_start']
end = self.val['_M_impl']['_M_finish']
delta_n = end['_M_node'] - start['_M_node'] - 1
delta_s = start['_M_last'] - start['_M_cur']
delta_e = end['_M_cur'] - end['_M_first']
size = self.buffer_size * delta_n + delta_s + delta_e
return '%s with %s' % (self.typename, num_elements(long(size)))
def children(self):
start = self.val['_M_impl']['_M_start']
end = self.val['_M_impl']['_M_finish']
return self._iter(start['_M_node'], start['_M_cur'], start['_M_last'],
end['_M_cur'], self.buffer_size)
def display_hint(self):
return 'array'
class StdDequeIteratorPrinter:
"""Print std::deque::iterator."""
def __init__(self, typename, val):
self.val = val
def to_string(self):
if not self.val['_M_cur']:
return 'non-dereferenceable iterator for std::deque'
return str(self.val['_M_cur'].dereference())
class StdStringPrinter:
"""Print a std::basic_string of some kind."""
def __init__(self, typename, val):
self.val = val
self.new_string = typename.find("::__cxx11::basic_string") != -1
def to_string(self):
# Make sure &string works, too.
type = self.val.type
if type.code == gdb.TYPE_CODE_REF:
type = type.target()
# Calculate the length of the string so that to_string returns
# the string according to length, not according to first null
# encountered.
ptr = self.val['_M_dataplus']['_M_p']
if self.new_string:
length = self.val['_M_string_length']
# https://sourceware.org/bugzilla/show_bug.cgi?id=17728
ptr = ptr.cast(ptr.type.strip_typedefs())
else:
realtype = type.unqualified().strip_typedefs()
reptype = gdb.lookup_type(str(realtype) + '::_Rep').pointer()
header = ptr.cast(reptype) - 1
length = header.dereference()['_M_length']
if hasattr(ptr, "lazy_string"):
return ptr.lazy_string(length=length)
return ptr.string(length=length)
def display_hint(self):
return 'string'
class Tr1HashtableIterator(Iterator):
def __init__(self, hashtable):
self.buckets = hashtable['_M_buckets']
self.bucket = 0
self.bucket_count = hashtable['_M_bucket_count']
self.node_type = find_type(hashtable.type, '_Node').pointer()
self.node = 0
while self.bucket != self.bucket_count:
self.node = self.buckets[self.bucket]
if self.node:
break
self.bucket = self.bucket + 1
def __iter__(self):
return self
def __next__(self):
if self.node == 0:
raise StopIteration
node = self.node.cast(self.node_type)
result = node.dereference()['_M_v']
self.node = node.dereference()['_M_next']
if self.node == 0:
self.bucket = self.bucket + 1
while self.bucket != self.bucket_count:
self.node = self.buckets[self.bucket]
if self.node:
break
self.bucket = self.bucket + 1
return result
class StdHashtableIterator(Iterator):
def __init__(self, hashtable):
self.node = hashtable['_M_before_begin']['_M_nxt']
valtype = hashtable.type.template_argument(1)
cached = hashtable.type.template_argument(9).template_argument(0)
node_type = lookup_templ_spec('std::__detail::_Hash_node', str(valtype),
'true' if cached else 'false')
self.node_type = node_type.pointer()
def __iter__(self):
return self
def __next__(self):
if self.node == 0:
raise StopIteration
elt = self.node.cast(self.node_type).dereference()
self.node = elt['_M_nxt']
valptr = elt['_M_storage'].address
valptr = valptr.cast(elt.type.template_argument(0).pointer())
return valptr.dereference()
class Tr1UnorderedSetPrinter:
"""Print a std::unordered_set or tr1::unordered_set."""
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
def hashtable(self):
if self.typename.startswith('std::tr1'):
return self.val
return self.val['_M_h']
def to_string(self):
count = self.hashtable()['_M_element_count']
return '%s with %s' % (self.typename, num_elements(count))
@staticmethod
def format_count(i):
return '[%d]' % i
def children(self):
counter = imap(self.format_count, itertools.count())
if self.typename.startswith('std::tr1'):
return izip(counter, Tr1HashtableIterator(self.hashtable()))
return izip(counter, StdHashtableIterator(self.hashtable()))
class Tr1UnorderedMapPrinter:
"""Print a std::unordered_map or tr1::unordered_map."""
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
def hashtable(self):
if self.typename.startswith('std::tr1'):
return self.val
return self.val['_M_h']
def to_string(self):
count = self.hashtable()['_M_element_count']
return '%s with %s' % (self.typename, num_elements(count))
@staticmethod
def flatten(list):
for elt in list:
for i in elt:
yield i
@staticmethod
def format_one(elt):
return (elt['first'], elt['second'])
@staticmethod
def format_count(i):
return '[%d]' % i
def children(self):
counter = imap(self.format_count, itertools.count())
# Map over the hash table and flatten the result.
if self.typename.startswith('std::tr1'):
data = self.flatten(
imap(self.format_one, Tr1HashtableIterator(self.hashtable())))
# Zip the two iterators together.
return izip(counter, data)
data = self.flatten(
imap(self.format_one, StdHashtableIterator(self.hashtable())))
# Zip the two iterators together.
return izip(counter, data)
def display_hint(self):
return 'map'
class StdForwardListPrinter:
"""Print a std::forward_list."""
class _iterator(Iterator):
def __init__(self, nodetype, head):
self.nodetype = nodetype
self.base = head['_M_next']
self.count = 0
def __iter__(self):
return self
def __next__(self):
if self.base == 0:
raise StopIteration
elt = self.base.cast(self.nodetype).dereference()
self.base = elt['_M_next']
count = self.count
self.count = self.count + 1
valptr = elt['_M_storage'].address
valptr = valptr.cast(elt.type.template_argument(0).pointer())
return ('[%d]' % count, valptr.dereference())
def __init__(self, typename, val):
self.val = val
self.typename = strip_versioned_namespace(typename)
def children(self):
nodetype = lookup_node_type('_Fwd_list_node', self.val.type).pointer()
return self._iterator(nodetype, self.val['_M_impl']['_M_head'])
def to_string(self):
if self.val['_M_impl']['_M_head']['_M_next'] == 0:
return 'empty %s' % self.typename
return '%s' % self.typename
class SingleObjContainerPrinter(object):
"""Base class for printers of containers of single objects."""
def __init__(self, val, viz, hint=None):
self.contained_value = val
self.visualizer = viz
self.hint = hint
def _recognize(self, type):
"""Return type as a string after applying type printers."""
global _use_type_printing
if not _use_type_printing:
return str(type)
return gdb.types.apply_type_recognizers(gdb.types.get_type_recognizers(),
type) or str(type)
class _contained(Iterator):
def __init__(self, val):
self.val = val
def __iter__(self):
return self
def __next__(self):
if self.val is None:
raise StopIteration
retval = self.val
self.val = None
return ('[contained value]', retval)
def children(self):
if self.contained_value is None:
return self._contained(None)
if hasattr(self.visualizer, 'children'):
return self.visualizer.children()
return self._contained(self.contained_value)
def display_hint(self):
if (hasattr(self.visualizer, 'children')
and hasattr(self.visualizer, 'display_hint')):
# If contained value is a map we want to display in the same way.
return self.visualizer.display_hint()
return self.hint
def function_pointer_to_name(f):
"""Find the name of the function referred to by the gdb.Value f,
which should contain a function pointer from the program."""
# Turn the function pointer into an actual address.
# This is needed to unpack ppc64 function descriptors.
f = f.dereference().address
if sys.version_info[0] == 2:
# Older versions of GDB need to use long for Python 2,
# because int(f) on 64-bit big-endian values raises a
# gdb.error saying "Cannot convert value to int."
f = long(f)
else:
f = int(f)
try:
# If the function can't be found older versions of GDB raise a
# RuntimeError saying "Cannot locate object file for block."
return gdb.block_for_pc(f).function.name
except:
return None
class StdExpAnyPrinter(SingleObjContainerPrinter):
"""Print a std::any or std::experimental::any."""
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.typename = re.sub(r'^std::experimental::fundamentals_v\d::',
'std::experimental::', self.typename, 1)
self.val = val
self.contained_type = None
contained_value = None
visualizer = None
mgr = self.val['_M_manager']
if mgr != 0:
func = function_pointer_to_name(mgr)
if not func:
raise ValueError(
"Invalid function pointer in %s" % (self.typename))
# We want to use this regular expression:
# T::_Manager_xxx<.*>::_S_manage\(T::_Op, const T\*, T::_Arg\*\)
# where T is std::any or std::experimental::any.
# But we need to account for variances in demangled names
# between GDB versions, e.g. 'enum T::_Op' instead of 'T::_Op'.
rx = (
r"({0}::_Manager_\w+<.*>)::_S_manage\("
r"(enum )?{0}::_Op, (const {0}|{0} const) ?\*, "
r"(union )?{0}::_Arg ?\*\)"
).format(typename)
m = re.match(rx, func)
if not m:
raise ValueError(
"Unknown manager function in %s" % self.typename)
mgrname = m.group(1)
# FIXME need to expand 'std::string' so that gdb.lookup_type works
if 'std::string' in mgrname:
mgrtypes = []
for s in StdExpAnyPrinter._string_types():
try:
x = re.sub(r"std::string(?!\w)", s, m.group(1))
# The following lookup might raise gdb.error if the
# manager function was never instantiated for 's' in
# the program, because there will be no such type.
mgrtypes.append(gdb.lookup_type(x))
except gdb.error:
pass
if len(mgrtypes) != 1:
# FIXME: this is unlikely in practice, but possible for
# programs that use both old and new string types with
# std::any in a single program. Can we do better?
# Maybe find the address of each type's _S_manage and
# compare to the address stored in _M_manager?
raise ValueError(
'Cannot uniquely determine std::string type '
'used in std::any'
)
mgrtype = mgrtypes[0]
else:
mgrtype = gdb.lookup_type(mgrname)
self.contained_type = mgrtype.template_argument(0)
valptr = None
if '::_Manager_internal' in mgrname:
valptr = self.val['_M_storage']['_M_buffer'].address
elif '::_Manager_external' in mgrname:
valptr = self.val['_M_storage']['_M_ptr']
else:
raise ValueError(
"Unknown manager function in %s" % self.typename)
contained_value = valptr.cast(
self.contained_type.pointer()).dereference()
visualizer = gdb.default_visualizer(contained_value)
super(StdExpAnyPrinter, self).__init__(contained_value, visualizer)
def to_string(self):
if self.contained_type is None:
return '%s [no contained value]' % self.typename
desc = "%s containing " % self.typename
if hasattr(self.visualizer, 'children'):
return desc + self.visualizer.to_string()
valtype = self._recognize(self.contained_type)
return desc + strip_versioned_namespace(str(valtype))
@staticmethod
def _string_types():
# This lookup for std::string might return the __cxx11 version,
# but that's not necessarily the one used by the std::any
# manager function we're trying to find.
strings = {str(gdb.lookup_type('std::string').strip_typedefs())}
# So also consider all the other possible std::string types!
s = 'basic_string, std::allocator >'
quals = ['std::', 'std::__cxx11::',
'std::' + _versioned_namespace]
strings |= {q + s for q in quals} # set of unique strings
return strings
class StdExpOptionalPrinter(SingleObjContainerPrinter):
"""Print a std::optional or std::experimental::optional."""
def __init__(self, typename, val):
valtype = self._recognize(val.type.template_argument(0))
typename = strip_versioned_namespace(typename)
self.typename = re.sub(
r'^std::(experimental::|)(fundamentals_v\d::|)(.*)',
r'std::\1\3<%s>' % valtype, typename, 1)
payload = val['_M_payload']
if self.typename.startswith('std::experimental'):
engaged = val['_M_engaged']
contained_value = payload
else:
engaged = payload['_M_engaged']
contained_value = payload['_M_payload']
try:
# Since GCC 9
contained_value = contained_value['_M_value']
except:
pass
visualizer = gdb.default_visualizer(contained_value)
if not engaged:
contained_value = None
super(StdExpOptionalPrinter, self).__init__(
contained_value, visualizer)
def to_string(self):
if self.contained_value is None:
return "%s [no contained value]" % self.typename
if hasattr(self.visualizer, 'children'):
return "%s containing %s" % (self.typename,
self.visualizer.to_string())
return self.typename
class StdVariantPrinter(SingleObjContainerPrinter):
"""Print a std::variant."""
def __init__(self, typename, val):
alternatives = get_template_arg_list(val.type)
self.typename = strip_versioned_namespace(typename)
self.typename = "%s<%s>" % (self.typename, ', '.join([self._recognize(alt) for alt in alternatives]))
self.index = val['_M_index']
if self.index >= len(alternatives):
self.contained_type = None
contained_value = None
visualizer = None
else:
self.contained_type = alternatives[int(self.index)]
addr = val['_M_u']['_M_first']['_M_storage'].address
contained_value = addr.cast(
self.contained_type.pointer()).dereference()
visualizer = gdb.default_visualizer(contained_value)
super(StdVariantPrinter, self).__init__(
contained_value, visualizer, 'array')
def to_string(self):
if self.contained_value is None:
return "%s [no contained value]" % self.typename
if hasattr(self.visualizer, 'children'):
return "%s [index %d] containing %s" % (self.typename, self.index,
self.visualizer.to_string())
return "%s [index %d]" % (self.typename, self.index)
class StdNodeHandlePrinter(SingleObjContainerPrinter):
"""Print a container node handle."""
def __init__(self, typename, val):
self.value_type = val.type.template_argument(1)
nodetype = val.type.template_argument(2).template_argument(0)
self.is_rb_tree_node = is_specialization_of(
nodetype.name, '_Rb_tree_node')
self.is_map_node = val.type.template_argument(0) != self.value_type
nodeptr = val['_M_ptr']
if nodeptr:
if self.is_rb_tree_node:
contained_value = get_value_from_Rb_tree_node(
nodeptr.dereference())
else:
contained_value = get_value_from_aligned_membuf(nodeptr['_M_storage'],
self.value_type)
visualizer = gdb.default_visualizer(contained_value)
else:
contained_value = None
visualizer = None
optalloc = val['_M_alloc']
self.alloc = optalloc['_M_payload'] if optalloc['_M_engaged'] else None
super(StdNodeHandlePrinter, self).__init__(contained_value, visualizer,
'array')
def to_string(self):
desc = 'node handle for '
if not self.is_rb_tree_node:
desc += 'unordered '
if self.is_map_node:
desc += 'map'
else:
desc += 'set'
if self.contained_value:
desc += ' with element'
if hasattr(self.visualizer, 'children'):
return "%s = %s" % (desc, self.visualizer.to_string())
return desc
else:
return 'empty %s' % desc
class StdExpStringViewPrinter:
"""
Print a std::basic_string_view or std::experimental::basic_string_view
"""
def __init__(self, typename, val):
self.val = val
def to_string(self):
ptr = self.val['_M_str']
len = self.val['_M_len']
if hasattr(ptr, "lazy_string"):
return ptr.lazy_string(length=len)
return ptr.string(length=len)
def display_hint(self):
return 'string'
class StdExpPathPrinter:
"""Print a std::experimental::filesystem::path."""
def __init__(self, typename, val):
self.val = val
self.typename = typename
start = self.val['_M_cmpts']['_M_impl']['_M_start']
finish = self.val['_M_cmpts']['_M_impl']['_M_finish']
self.num_cmpts = int(finish - start)
def _path_type(self):
t = str(self.val['_M_type'])
if t[-9:] == '_Root_dir':
return "root-directory"
if t[-10:] == '_Root_name':
return "root-name"
return None
def to_string(self):
path = "%s" % self.val['_M_pathname']
if self.num_cmpts == 0:
t = self._path_type()
if t:
path = '%s [%s]' % (path, t)
return "experimental::filesystem::path %s" % path
class _iterator(Iterator):
def __init__(self, cmpts, pathtype):
self.pathtype = pathtype
self.item = cmpts['_M_impl']['_M_start']
self.finish = cmpts['_M_impl']['_M_finish']
self.count = 0
def __iter__(self):
return self
def __next__(self):
if self.item == self.finish:
raise StopIteration
item = self.item.dereference()
count = self.count
self.count = self.count + 1
self.item = self.item + 1
path = item['_M_pathname']
t = StdExpPathPrinter(self.pathtype, item)._path_type()
if not t:
t = count
return ('[%s]' % t, path)
def children(self):
return self._iterator(self.val['_M_cmpts'], self.typename)
class StdPathPrinter:
"""Print a std::filesystem::path."""
def __init__(self, typename, val):
self.val = val
self.typename = typename
impl = unique_ptr_get(self.val['_M_cmpts']['_M_impl'])
self.type = impl.cast(gdb.lookup_type('uintptr_t')) & 3
if self.type == 0:
self.impl = impl
else:
self.impl = None
def _path_type(self):
t = str(self.type.cast(gdb.lookup_type(self.typename + '::_Type')))
if t[-9:] == '_Root_dir':
return "root-directory"
if t[-10:] == '_Root_name':
return "root-name"
return None
def to_string(self):
path = "%s" % self.val['_M_pathname']
if self.type != 0:
t = self._path_type()
if t:
path = '%s [%s]' % (path, t)
return "filesystem::path %s" % path
class _iterator(Iterator):
def __init__(self, impl, pathtype):
self.pathtype = pathtype
if impl:
# We can't access _Impl::_M_size because _Impl is incomplete
# so cast to int* to access the _M_size member at offset zero,
int_type = gdb.lookup_type('int')
cmpt_type = gdb.lookup_type(pathtype + '::_Cmpt')
char_type = gdb.lookup_type('char')
impl = impl.cast(int_type.pointer())
size = impl.dereference()
#self.capacity = (impl + 1).dereference()
if hasattr(gdb.Type, 'alignof'):
sizeof_Impl = max(2 * int_type.sizeof, cmpt_type.alignof)
else:
sizeof_Impl = 2 * int_type.sizeof
begin = impl.cast(char_type.pointer()) + sizeof_Impl
self.item = begin.cast(cmpt_type.pointer())
self.finish = self.item + size
self.count = 0
else:
self.item = None
self.finish = None
def __iter__(self):
return self
def __next__(self):
if self.item == self.finish:
raise StopIteration
item = self.item.dereference()
count = self.count
self.count = self.count + 1
self.item = self.item + 1
path = item['_M_pathname']
t = StdPathPrinter(self.pathtype, item)._path_type()
if not t:
t = count
return ('[%s]' % t, path)
def children(self):
return self._iterator(self.impl, self.typename)
class StdPairPrinter:
"""Print a std::pair object, with 'first' and 'second' as children."""
def __init__(self, typename, val):
self.val = val
class _iter(Iterator):
"""An iterator for std::pair types. Returns 'first' then 'second'."""
def __init__(self, val):
self.val = val
self.which = 'first'
def __iter__(self):
return self
def __next__(self):
if self.which is None:
raise StopIteration
which = self.which
if which == 'first':
self.which = 'second'
else:
self.which = None
return (which, self.val[which])
def children(self):
return self._iter(self.val)
def to_string(self):
return None
class StdCmpCatPrinter:
"""Print a comparison category object."""
def __init__(self, typename, val):
self.typename = typename[typename.rfind(':') + 1:]
self.val = val['_M_value']
def to_string(self):
if self.typename == 'strong_ordering' and self.val == 0:
name = 'equal'
else:
names = {2: 'unordered', -1: 'less', 0: 'equivalent', 1: 'greater'}
name = names[int(self.val)]
return 'std::{}::{}'.format(self.typename, name)
class StdErrorCodePrinter:
"""Print a std::error_code or std::error_condition."""
_system_is_posix = None # Whether std::system_category() use errno values.
def __init__(self, typename, val):
self.val = val
self.typename = strip_versioned_namespace(typename)
# Do this only once ...
if StdErrorCodePrinter._system_is_posix is None:
try:
import posix
StdErrorCodePrinter._system_is_posix = True
except ImportError:
StdErrorCodePrinter._system_is_posix = False
@staticmethod
def _find_errc_enum(name):
typ = gdb.lookup_type(name)
if typ is not None and typ.code == gdb.TYPE_CODE_ENUM:
return typ
return None
@classmethod
def _find_standard_errc_enum(cls, name):
for ns in ['', _versioned_namespace]:
try:
qname = 'std::{}{}'.format(ns, name)
return cls._find_errc_enum(qname)
except RuntimeError:
pass
@classmethod
def _match_net_ts_category(cls, cat):
net_cats = ['stream', 'socket', 'ip::resolver']
for c in net_cats:
func = c + '_category()'
for ns in ['', _versioned_namespace]:
ns = 'std::{}experimental::net::v1'.format(ns)
sym = gdb.lookup_symbol('{}::{}::__c'.format(ns, func))[0]
if sym is not None:
if cat == sym.value().address:
name = 'net::' + func
enum = cls._find_errc_enum('{}::{}_errc'.format(ns, c))
return (name, enum)
return (None, None)
@classmethod
def _category_info(cls, cat):
"""Return details of a std::error_category."""
name = None
enum = None
is_errno = False
# Try these first, or we get "warning: RTTI symbol not found" when
# using cat.dynamic_type on the local class types for Net TS
# categories.
func, enum = cls._match_net_ts_category(cat)
if func is not None:
return (None, func, enum, is_errno)
# This might give a warning for a program-defined category defined as
# a local class, but there doesn't seem to be any way to avoid that.
typ = cat.dynamic_type.target()
# Shortcuts for the known categories defined by libstdc++.
if typ.tag.endswith('::generic_error_category'):
name = 'generic'
is_errno = True
if typ.tag.endswith('::system_error_category'):
name = 'system'
is_errno = cls._system_is_posix
if typ.tag.endswith('::future_error_category'):
name = 'future'
enum = cls._find_standard_errc_enum('future_errc')
if typ.tag.endswith('::io_error_category'):
name = 'io'
enum = cls._find_standard_errc_enum('io_errc')
if name is None:
try:
# Want to call std::error_category::name() override, but it's
# unsafe: https://sourceware.org/bugzilla/show_bug.cgi?id=28856
# gdb.set_convenience_variable('__cat', cat)
# return '"%s"' % gdb.parse_and_eval('$__cat->name()').string()
pass
except:
pass
return (name, typ.tag, enum, is_errno)
@staticmethod
def _unqualified_name(name):
"""
Strip any nested-name-specifier from name to give an unqualified name.
"""
return name.split('::')[-1]
def to_string(self):
value = self.val['_M_value']
cat = self.val['_M_cat']
name, alt_name, enum, is_errno = self._category_info(cat)
if value == 0:
default_cats = {'error_code': 'system',
'error_condition': 'generic'}
if name == default_cats[self._unqualified_name(self.typename)]:
return self.typename + ' = { }' # default-constructed value
strval = str(value)
if is_errno and value != 0:
try:
strval = errno.errorcode[int(value)]
except:
pass
elif enum is not None:
strval = self._unqualified_name(str(value.cast(enum)))
if name is not None:
name = '"%s"' % name
else:
name = alt_name
return '%s = {%s: %s}' % (self.typename, name, strval)
class StdRegexStatePrinter:
"""Print a state node in the NFA for a std::regex."""
def __init__(self, typename, val):
self.val = val
self.typename = typename
def to_string(self):
opcode = str(self.val['_M_opcode'])
if opcode:
opcode = opcode[25:]
next_id = self.val['_M_next']
variants = {'repeat': 'alt', 'alternative': 'alt',
'subexpr_begin': 'subexpr', 'subexpr_end': 'subexpr',
'line_begin_assertion': None, 'line_end_assertion': None,
'word_boundary': 'neg', 'subexpr_lookahead': 'neg',
'backref': 'backref_index',
'match': None, 'accept': None,
'dummy': None, 'unknown': None
}
v = variants[opcode]
s = "opcode={}, next={}".format(opcode, next_id)
if v is not None and self.val['_M_' + v] is not None:
s = "{}, {}={}".format(s, v, self.val['_M_' + v])
return "{%s}" % (s)
class StdSpanPrinter:
"""Print a std::span."""
class iterator(Iterator):
def __init__(self, begin, size):
self.count = 0
self.begin = begin
self.size = size
def __iter__(self):
return self
def __next__(self):
if self.count == self.size:
raise StopIteration
count = self.count
self.count = self.count + 1
return '[%d]' % count, (self.begin + count).dereference()
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
size_max = gdb.parse_and_eval('static_cast(-1)')
if val.type.template_argument(1) == size_max:
self.size = val['_M_extent']['_M_extent_value']
else:
self.size = val.type.template_argument(1)
def to_string(self):
return '%s of length %d' % (self.typename, self.size)
def children(self):
return self.iterator(self.val['_M_ptr'], self.size)
def display_hint(self):
return 'array'
class StdInitializerListPrinter:
"""Print a std::initializer_list."""
def __init__(self, typename, val):
self.typename = typename
self.val = val
self.size = val['_M_len']
def to_string(self):
return '%s of length %d' % (self.typename, self.size)
def children(self):
return StdSpanPrinter.iterator(self.val['_M_array'], self.size)
def display_hint(self):
return 'array'
class StdAtomicPrinter:
"""Print a std:atomic."""
def __init__(self, typename, val):
self.typename = strip_versioned_namespace(typename)
self.val = val
self.shptr_printer = None
self.value_type = self.val.type.template_argument(0)
if self.value_type.tag is not None:
typ = strip_versioned_namespace(self.value_type.tag)
if (typ.startswith('std::shared_ptr<')
or typ.startswith('std::weak_ptr<')):
impl = val['_M_impl']
self.shptr_printer = SharedPointerPrinter(typename, impl)
self.children = self._shptr_children
def _shptr_children(self):
return SmartPtrIterator(self.shptr_printer.pointer)
def to_string(self):
if self.shptr_printer is not None:
return self.shptr_printer.to_string()
if self.value_type.code == gdb.TYPE_CODE_INT:
val = self.val['_M_i']
elif self.value_type.code == gdb.TYPE_CODE_FLT:
val = self.val['_M_fp']
elif self.value_type.code == gdb.TYPE_CODE_PTR:
val = self.val['_M_b']['_M_p']
elif self.value_type.code == gdb.TYPE_CODE_BOOL:
val = self.val['_M_base']['_M_i']
else:
val = self.val['_M_i']
return '%s<%s> = { %s }' % (self.typename, str(self.value_type), val)
# A "regular expression" printer which conforms to the
# "SubPrettyPrinter" protocol from gdb.printing.
class RxPrinter(object):
def __init__(self, name, function):
super(RxPrinter, self).__init__()
self.name = name
self.function = function
self.enabled = True
def invoke(self, value):
if not self.enabled:
return None
if value.type.code == gdb.TYPE_CODE_REF:
if hasattr(gdb.Value, "referenced_value"):
value = value.referenced_value()
return self.function(self.name, value)
# A pretty-printer that conforms to the "PrettyPrinter" protocol from
# gdb.printing. It can also be used directly as an old-style printer.
class Printer(object):
def __init__(self, name):
super(Printer, self).__init__()
self.name = name
self.subprinters = []
self.lookup = {}
self.enabled = True
self.compiled_rx = re.compile('^([a-zA-Z0-9_:]+)(<.*>)?$')
def add(self, name, function):
# A small sanity check.
# FIXME
if not self.compiled_rx.match(name):
raise ValueError(
'libstdc++ programming error: "%s" does not match' % name)
printer = RxPrinter(name, function)
self.subprinters.append(printer)
self.lookup[name] = printer
# Add a name using _GLIBCXX_BEGIN_NAMESPACE_VERSION.
def add_version(self, base, name, function):
self.add(base + name, function)
if '__cxx11' not in base:
vbase = re.sub('^(std|__gnu_cxx)::', r'\g<0>%s' %
_versioned_namespace, base)
self.add(vbase + name, function)
# Add a name using _GLIBCXX_BEGIN_NAMESPACE_CONTAINER.
def add_container(self, base, name, function):
self.add_version(base, name, function)
self.add_version(base + '__cxx1998::', name, function)
@staticmethod
def get_basic_type(type):
# If it points to a reference, get the reference.
if type.code == gdb.TYPE_CODE_REF:
type = type.target()
# Get the unqualified type, stripped of typedefs.
type = type.unqualified().strip_typedefs()
return type.tag
def __call__(self, val):
typename = self.get_basic_type(val.type)
if not typename:
return None
# All the types we match are template types, so we can use a
# dictionary.
match = self.compiled_rx.match(typename)
if not match:
return None
basename = match.group(1)
if val.type.code == gdb.TYPE_CODE_REF:
if hasattr(gdb.Value, "referenced_value"):
val = val.referenced_value()
if basename in self.lookup:
return self.lookup[basename].invoke(val)
# Cannot find a pretty printer. Return None.
return None
libstdcxx_printer = None
class TemplateTypePrinter(object):
"""
A type printer for class templates with default template arguments.
Recognizes specializations of class templates and prints them without
any template arguments that use a default template argument.
Type printers are recursively applied to the template arguments.
e.g. replace 'std::vector >' with 'std::vector'.
"""
def __init__(self, name, defargs):
self.name = name
self.defargs = defargs
self.enabled = True
class _recognizer(object):
"""The recognizer class for TemplateTypePrinter."""
def __init__(self, name, defargs):
self.name = name
self.defargs = defargs
# self.type_obj = None
def recognize(self, type_obj):
"""
If type_obj is a specialization of self.name that uses all the
default template arguments for the class template, then return
a string representation of the type without default arguments.
Otherwise, return None.
"""
if type_obj.tag is None:
return None
if not type_obj.tag.startswith(self.name):
return None
template_args = get_template_arg_list(type_obj)
displayed_args = []
require_defaulted = False
for n in range(len(template_args)):
# The actual template argument in the type:
targ = template_args[n]
# The default template argument for the class template:
defarg = self.defargs.get(n)
if defarg is not None:
# Substitute other template arguments into the default:
defarg = defarg.format(*template_args)
# Fail to recognize the type (by returning None)
# unless the actual argument is the same as the default.
try:
if targ != gdb.lookup_type(defarg):
return None
except gdb.error:
# Type lookup failed, just use string comparison:
if targ.tag != defarg:
return None
# All subsequent args must have defaults:
require_defaulted = True
elif require_defaulted:
return None
else:
# Recursively apply recognizers to the template argument
# and add it to the arguments that will be displayed:
displayed_args.append(self._recognize_subtype(targ))
# This assumes no class templates in the nested-name-specifier:
template_name = type_obj.tag[0:type_obj.tag.find('<')]
template_name = strip_inline_namespaces(template_name)
return template_name + '<' + ', '.join(displayed_args) + '>'
def _recognize_subtype(self, type_obj):
"""Convert a gdb.Type to a string by applying recognizers,
or if that fails then simply converting to a string."""
if type_obj.code == gdb.TYPE_CODE_PTR:
return self._recognize_subtype(type_obj.target()) + '*'
if type_obj.code == gdb.TYPE_CODE_ARRAY:
type_str = self._recognize_subtype(type_obj.target())
if str(type_obj.strip_typedefs()).endswith('[]'):
return type_str + '[]' # array of unknown bound
return "%s[%d]" % (type_str, type_obj.range()[1] + 1)
if type_obj.code == gdb.TYPE_CODE_REF:
return self._recognize_subtype(type_obj.target()) + '&'
if hasattr(gdb, 'TYPE_CODE_RVALUE_REF'):
if type_obj.code == gdb.TYPE_CODE_RVALUE_REF:
return self._recognize_subtype(type_obj.target()) + '&&'
type_str = gdb.types.apply_type_recognizers(
gdb.types.get_type_recognizers(), type_obj)
if type_str:
return type_str
return str(type_obj)
def instantiate(self):
"""Return a recognizer object for this type printer."""
return self._recognizer(self.name, self.defargs)
def add_one_template_type_printer(obj, name, defargs):
"""
Add a type printer for a class template with default template arguments.
Args:
name (str): The template-name of the class template.
defargs (dict int:string) The default template arguments.
Types in defargs can refer to the Nth template-argument using {N}
(with zero-based indices).
e.g. 'unordered_map' has these defargs:
{ 2: 'std::hash<{0}>',
3: 'std::equal_to<{0}>',
4: 'std::allocator >' }
"""
printer = TemplateTypePrinter('std::' + name, defargs)
gdb.types.register_type_printer(obj, printer)
# Add type printer for same type in debug namespace:
printer = TemplateTypePrinter('std::__debug::' + name, defargs)
gdb.types.register_type_printer(obj, printer)
if '__cxx11' not in name:
# Add second type printer for same type in versioned namespace:
ns = 'std::' + _versioned_namespace
# PR 86112 Cannot use dict comprehension here:
defargs = dict((n, d.replace('std::', ns))
for (n, d) in defargs.items())
printer = TemplateTypePrinter(ns + name, defargs)
gdb.types.register_type_printer(obj, printer)
class FilteringTypePrinter(object):
"""
A type printer that uses typedef names for common template specializations.
Args:
template (str): The class template to recognize.
name (str): The typedef-name that will be used instead.
targ1 (str): The first template argument.
If arg1 is provided (not None), match only template specializations
with this type as the first template argument,
e.g. if template='basic_string is the same type as
std::istream then print it as std::istream.
"""
def __init__(self, template, name, targ1):
self.template = template
self.name = name
self.targ1 = targ1
self.enabled = True
class _recognizer(object):
"""The recognizer class for FilteringTypePrinter."""
def __init__(self, template, name, targ1):
self.template = template
self.name = name
self.targ1 = targ1
self.type_obj = None
def recognize(self, type_obj):
"""
If type_obj starts with self.template and is the same type as
self.name then return self.name, otherwise None.
"""
if type_obj.tag is None:
return None
if self.type_obj is None:
if self.targ1 is not None:
s = '{}<{}'.format(self.template, self.targ1)
if not type_obj.tag.startswith(s):
# Filter didn't match.
return None
elif not type_obj.tag.startswith(self.template):
# Filter didn't match.
return None
try:
self.type_obj = gdb.lookup_type(self.name).strip_typedefs()
except:
pass
if self.type_obj is None:
return None
t1 = gdb.types.get_basic_type(self.type_obj)
t2 = gdb.types.get_basic_type(type_obj)
if t1 == t2:
return strip_inline_namespaces(self.name)
# Workaround ambiguous typedefs matching both std:: and
# std::__cxx11:: symbols.
if self.template.split('::')[-1] == 'basic_string':
s1 = self.type_obj.tag.replace('__cxx11::', '')
s2 = type_obj.tag.replace('__cxx11::', '')
if s1 == s2:
return strip_inline_namespaces(self.name)
return None
def instantiate(self):
"""Return a recognizer object for this type printer."""
return self._recognizer(self.template, self.name, self.targ1)
def add_one_type_printer(obj, template, name, targ1=None):
printer = FilteringTypePrinter('std::' + template, 'std::' + name, targ1)
gdb.types.register_type_printer(obj, printer)
if '__cxx11' not in template:
ns = 'std::' + _versioned_namespace
printer = FilteringTypePrinter(ns + template, ns + name, targ1)
gdb.types.register_type_printer(obj, printer)
def register_type_printers(obj):
global _use_type_printing
if not _use_type_printing:
return
# Add type printers for typedefs std::string, std::wstring etc.
for ch in (('', 'char'),
('w', 'wchar_t'),
('u8', 'char8_t'),
('u16', 'char16_t'),
('u32', 'char32_t')):
add_one_type_printer(obj, 'basic_string', ch[0] + 'string', ch[1])
add_one_type_printer(obj, '__cxx11::basic_string',
ch[0] + 'string', ch[1])
# Typedefs for __cxx11::basic_string used to be in namespace __cxx11:
add_one_type_printer(obj, '__cxx11::basic_string',
'__cxx11::' + ch[0] + 'string', ch[1])
add_one_type_printer(obj, 'basic_string_view',
ch[0] + 'string_view', ch[1])
# Add type printers for typedefs std::istream, std::wistream etc.
for ch in (('', 'char'), ('w', 'wchar_t')):
for x in ('ios', 'streambuf', 'istream', 'ostream', 'iostream',
'filebuf', 'ifstream', 'ofstream', 'fstream'):
add_one_type_printer(obj, 'basic_' + x, ch[0] + x, ch[1])
for x in ('stringbuf', 'istringstream', 'ostringstream',
'stringstream'):
add_one_type_printer(obj, 'basic_' + x, ch[0] + x, ch[1])
# types are in __cxx11 namespace, but typedefs aren't:
add_one_type_printer(obj, '__cxx11::basic_' + x, ch[0] + x, ch[1])
# Add type printers for typedefs regex, wregex, cmatch, wcmatch etc.
for abi in ('', '__cxx11::'):
for ch in (('', 'char'), ('w', 'wchar_t')):
add_one_type_printer(obj, abi + 'basic_regex',
abi + ch[0] + 'regex', ch[1])
for ch in ('c', 's', 'wc', 'ws'):
add_one_type_printer(
obj, abi + 'match_results', abi + ch + 'match')
for x in ('sub_match', 'regex_iterator', 'regex_token_iterator'):
add_one_type_printer(obj, abi + x, abi + ch + x)
# Note that we can't have a printer for std::wstreampos, because
# it is the same type as std::streampos.
add_one_type_printer(obj, 'fpos', 'streampos')
# Add type printers for typedefs.
for dur in ('nanoseconds', 'microseconds', 'milliseconds',
'seconds', 'minutes', 'hours'):
add_one_type_printer(obj, 'duration', dur)
# Add type printers for typedefs.
add_one_type_printer(obj, 'linear_congruential_engine', 'minstd_rand0')
add_one_type_printer(obj, 'linear_congruential_engine', 'minstd_rand')
add_one_type_printer(obj, 'mersenne_twister_engine', 'mt19937')
add_one_type_printer(obj, 'mersenne_twister_engine', 'mt19937_64')
add_one_type_printer(obj, 'subtract_with_carry_engine', 'ranlux24_base')
add_one_type_printer(obj, 'subtract_with_carry_engine', 'ranlux48_base')
add_one_type_printer(obj, 'discard_block_engine', 'ranlux24')
add_one_type_printer(obj, 'discard_block_engine', 'ranlux48')
add_one_type_printer(obj, 'shuffle_order_engine', 'knuth_b')
# Add type printers for experimental::basic_string_view typedefs.
ns = 'experimental::fundamentals_v1::'
for ch in (('', 'char'),
('w', 'wchar_t'),
('u8', 'char8_t'),
('u16', 'char16_t'),
('u32', 'char32_t')):
add_one_type_printer(obj, ns + 'basic_string_view',
ns + ch[0] + 'string_view', ch[1])
# Do not show defaulted template arguments in class templates.
add_one_template_type_printer(obj, 'unique_ptr',
{1: 'std::default_delete<{0}>'})
add_one_template_type_printer(obj, 'deque', {1: 'std::allocator<{0}>'})
add_one_template_type_printer(
obj, 'forward_list', {1: 'std::allocator<{0}>'})
add_one_template_type_printer(obj, 'list', {1: 'std::allocator<{0}>'})
add_one_template_type_printer(
obj, '__cxx11::list', {1: 'std::allocator<{0}>'})
add_one_template_type_printer(obj, 'vector', {1: 'std::allocator<{0}>'})
add_one_template_type_printer(obj, 'map',
{2: 'std::less<{0}>',
3: 'std::allocator>'})
add_one_template_type_printer(obj, 'multimap',
{2: 'std::less<{0}>',
3: 'std::allocator>'})
add_one_template_type_printer(obj, 'set',
{1: 'std::less<{0}>', 2: 'std::allocator<{0}>'})
add_one_template_type_printer(obj, 'multiset',
{1: 'std::less<{0}>', 2: 'std::allocator<{0}>'})
add_one_template_type_printer(obj, 'unordered_map',
{2: 'std::hash<{0}>',
3: 'std::equal_to<{0}>',
4: 'std::allocator>'})
add_one_template_type_printer(obj, 'unordered_multimap',
{2: 'std::hash<{0}>',
3: 'std::equal_to<{0}>',
4: 'std::allocator>'})
add_one_template_type_printer(obj, 'unordered_set',
{1: 'std::hash<{0}>',
2: 'std::equal_to<{0}>',
3: 'std::allocator<{0}>'})
add_one_template_type_printer(obj, 'unordered_multiset',
{1: 'std::hash<{0}>',
2: 'std::equal_to<{0}>',
3: 'std::allocator<{0}>'})
def register_libstdcxx_printers(obj):
"""Register libstdc++ pretty-printers with objfile Obj."""
global _use_gdb_pp
global libstdcxx_printer
if _use_gdb_pp:
gdb.printing.register_pretty_printer(obj, libstdcxx_printer)
else:
if obj is None:
obj = gdb
obj.pretty_printers.append(libstdcxx_printer)
register_type_printers(obj)
def build_libstdcxx_dictionary():
global libstdcxx_printer
libstdcxx_printer = Printer("libstdc++-v6")
# libstdc++ objects requiring pretty-printing.
# In order from:
# http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a01847.html
libstdcxx_printer.add_version('std::', 'basic_string', StdStringPrinter)
libstdcxx_printer.add_version(
'std::__cxx11::', 'basic_string', StdStringPrinter)
libstdcxx_printer.add_container('std::', 'bitset', StdBitsetPrinter)
libstdcxx_printer.add_container('std::', 'deque', StdDequePrinter)
libstdcxx_printer.add_container('std::', 'list', StdListPrinter)
libstdcxx_printer.add_container('std::__cxx11::', 'list', StdListPrinter)
libstdcxx_printer.add_container('std::', 'map', StdMapPrinter)
libstdcxx_printer.add_container('std::', 'multimap', StdMapPrinter)
libstdcxx_printer.add_container('std::', 'multiset', StdSetPrinter)
libstdcxx_printer.add_version('std::', 'pair', StdPairPrinter)
libstdcxx_printer.add_version('std::', 'priority_queue',
StdStackOrQueuePrinter)
libstdcxx_printer.add_version('std::', 'queue', StdStackOrQueuePrinter)
libstdcxx_printer.add_version('std::', 'tuple', StdTuplePrinter)
libstdcxx_printer.add_container('std::', 'set', StdSetPrinter)
libstdcxx_printer.add_version('std::', 'stack', StdStackOrQueuePrinter)
libstdcxx_printer.add_version('std::', 'unique_ptr', UniquePointerPrinter)
libstdcxx_printer.add_container('std::', 'vector', StdVectorPrinter)
# vector
if hasattr(gdb.Value, 'dynamic_type'):
libstdcxx_printer.add_version('std::', 'error_code',
StdErrorCodePrinter)
libstdcxx_printer.add_version('std::', 'error_condition',
StdErrorCodePrinter)
# Printer registrations for classes compiled with -D_GLIBCXX_DEBUG.
libstdcxx_printer.add('std::__debug::bitset', StdBitsetPrinter)
libstdcxx_printer.add('std::__debug::deque', StdDequePrinter)
libstdcxx_printer.add('std::__debug::list', StdListPrinter)
libstdcxx_printer.add('std::__debug::map', StdMapPrinter)
libstdcxx_printer.add('std::__debug::multimap', StdMapPrinter)
libstdcxx_printer.add('std::__debug::multiset', StdSetPrinter)
libstdcxx_printer.add('std::__debug::set', StdSetPrinter)
libstdcxx_printer.add('std::__debug::vector', StdVectorPrinter)
# These are the TR1 and C++11 printers.
# For array - the default GDB pretty-printer seems reasonable.
libstdcxx_printer.add_version('std::', 'shared_ptr', SharedPointerPrinter)
libstdcxx_printer.add_version('std::', 'weak_ptr', SharedPointerPrinter)
libstdcxx_printer.add_container('std::', 'unordered_map',
Tr1UnorderedMapPrinter)
libstdcxx_printer.add_container('std::', 'unordered_set',
Tr1UnorderedSetPrinter)
libstdcxx_printer.add_container('std::', 'unordered_multimap',
Tr1UnorderedMapPrinter)
libstdcxx_printer.add_container('std::', 'unordered_multiset',
Tr1UnorderedSetPrinter)
libstdcxx_printer.add_container('std::', 'forward_list',
StdForwardListPrinter)
libstdcxx_printer.add_version(
'std::tr1::', 'shared_ptr', SharedPointerPrinter)
libstdcxx_printer.add_version(
'std::tr1::', 'weak_ptr', SharedPointerPrinter)
libstdcxx_printer.add_version('std::tr1::', 'unordered_map',
Tr1UnorderedMapPrinter)
libstdcxx_printer.add_version('std::tr1::', 'unordered_set',
Tr1UnorderedSetPrinter)
libstdcxx_printer.add_version('std::tr1::', 'unordered_multimap',
Tr1UnorderedMapPrinter)
libstdcxx_printer.add_version('std::tr1::', 'unordered_multiset',
Tr1UnorderedSetPrinter)
libstdcxx_printer.add_version('std::', 'initializer_list',
StdInitializerListPrinter)
libstdcxx_printer.add_version('std::', 'atomic', StdAtomicPrinter)
# std::regex components
libstdcxx_printer.add_version('std::__detail::', '_State',
StdRegexStatePrinter)
# These are the C++11 printer registrations for -D_GLIBCXX_DEBUG cases.
# The tr1 namespace containers do not have any debug equivalents,
# so do not register printers for them.
libstdcxx_printer.add('std::__debug::unordered_map',
Tr1UnorderedMapPrinter)
libstdcxx_printer.add('std::__debug::unordered_set',
Tr1UnorderedSetPrinter)
libstdcxx_printer.add('std::__debug::unordered_multimap',
Tr1UnorderedMapPrinter)
libstdcxx_printer.add('std::__debug::unordered_multiset',
Tr1UnorderedSetPrinter)
libstdcxx_printer.add('std::__debug::forward_list',
StdForwardListPrinter)
# Library Fundamentals TS components
libstdcxx_printer.add_version('std::experimental::fundamentals_v1::',
'any', StdExpAnyPrinter)
libstdcxx_printer.add_version('std::experimental::fundamentals_v1::',
'optional', StdExpOptionalPrinter)
libstdcxx_printer.add_version('std::experimental::fundamentals_v1::',
'basic_string_view', StdExpStringViewPrinter)
# Filesystem TS components
libstdcxx_printer.add_version('std::experimental::filesystem::v1::',
'path', StdExpPathPrinter)
libstdcxx_printer.add_version('std::experimental::filesystem::v1::__cxx11::',
'path', StdExpPathPrinter)
libstdcxx_printer.add_version('std::filesystem::',
'path', StdPathPrinter)
libstdcxx_printer.add_version('std::filesystem::__cxx11::',
'path', StdPathPrinter)
# C++17 components
libstdcxx_printer.add_version('std::',
'any', StdExpAnyPrinter)
libstdcxx_printer.add_version('std::',
'optional', StdExpOptionalPrinter)
libstdcxx_printer.add_version('std::',
'basic_string_view', StdExpStringViewPrinter)
libstdcxx_printer.add_version('std::',
'variant', StdVariantPrinter)
libstdcxx_printer.add_version('std::',
'_Node_handle', StdNodeHandlePrinter)
# C++20 components
libstdcxx_printer.add_version(
'std::', 'partial_ordering', StdCmpCatPrinter)
libstdcxx_printer.add_version('std::', 'weak_ordering', StdCmpCatPrinter)
libstdcxx_printer.add_version('std::', 'strong_ordering', StdCmpCatPrinter)
libstdcxx_printer.add_version('std::', 'span', StdSpanPrinter)
# Extensions.
libstdcxx_printer.add_version('__gnu_cxx::', 'slist', StdSlistPrinter)
if True:
# These shouldn't be necessary, if GDB "print *i" worked.
# But it often doesn't, so here they are.
libstdcxx_printer.add_container('std::', '_List_iterator',
StdListIteratorPrinter)
libstdcxx_printer.add_container('std::', '_List_const_iterator',
StdListIteratorPrinter)
libstdcxx_printer.add_version('std::', '_Rb_tree_iterator',
StdRbtreeIteratorPrinter)
libstdcxx_printer.add_version('std::', '_Rb_tree_const_iterator',
StdRbtreeIteratorPrinter)
libstdcxx_printer.add_container('std::', '_Deque_iterator',
StdDequeIteratorPrinter)
libstdcxx_printer.add_container('std::', '_Deque_const_iterator',
StdDequeIteratorPrinter)
libstdcxx_printer.add_version('__gnu_cxx::', '__normal_iterator',
StdVectorIteratorPrinter)
libstdcxx_printer.add_container('std::', '_Bit_iterator',
StdBitIteratorPrinter)
libstdcxx_printer.add_container('std::', '_Bit_const_iterator',
StdBitIteratorPrinter)
libstdcxx_printer.add_container('std::', '_Bit_reference',
StdBitReferencePrinter)
libstdcxx_printer.add_version('__gnu_cxx::', '_Slist_iterator',
StdSlistIteratorPrinter)
libstdcxx_printer.add_container('std::', '_Fwd_list_iterator',
StdFwdListIteratorPrinter)
libstdcxx_printer.add_container('std::', '_Fwd_list_const_iterator',
StdFwdListIteratorPrinter)
# Debug (compiled with -D_GLIBCXX_DEBUG) printer
# registrations.
libstdcxx_printer.add('__gnu_debug::_Safe_iterator',
StdDebugIteratorPrinter)
build_libstdcxx_dictionary()