/* Native-dependent code for BSD Unix running on ARM's, for GDB. Copyright (C) 1988-2023 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* We define this to get types like register_t. */ #include "defs.h" #include "gdbcore.h" #include "inferior.h" #include "regcache.h" #include "target.h" #include <sys/types.h> #include <sys/ptrace.h> #include <sys/sysctl.h> #include <machine/reg.h> #include <machine/pcb.h> #include <machine/frame.h> #include <arm/arm32/frame.h> #include "arm-tdep.h" #include "arm-netbsd-tdep.h" #include "aarch32-tdep.h" #include "inf-ptrace.h" #include "netbsd-nat.h" #include "bsd-kvm.h" /* Determine if PT_GETREGS fetches REGNUM. */ static bool getregs_supplies (int regnum) { return ((regnum >= ARM_A1_REGNUM && regnum <= ARM_PC_REGNUM) || regnum == ARM_PS_REGNUM); } /* Determine if PT_GETFPREGS fetches REGNUM. */ static bool getfpregs_supplies (int regnum) { return ((regnum >= ARM_D0_REGNUM && regnum <= ARM_D31_REGNUM) || regnum == ARM_FPSCR_REGNUM); } class arm_netbsd_nat_target final : public nbsd_nat_target { public: /* Add our register access methods. */ void fetch_registers (struct regcache *, int) override; void store_registers (struct regcache *, int) override; const struct target_desc *read_description () override; }; static arm_netbsd_nat_target the_arm_netbsd_nat_target; static int armnbsd_supply_pcb (struct regcache *regcache, struct pcb *pcb) { struct switchframe sf; /* The following is true for NetBSD/arm32 in 5.0 and after: The pcb contains r8-r13 (sp) at the point of context switch in cpu_switchto() or call of dumpsys(). At that point we have a stack frame as described by `struct switchframe', which for NetBSD/arm32 has the following layout: r4 ascending. r5 | r6 | r7 \|/ old sp pc we reconstruct the register state as it would look when we just returned from cpu_switchto() or dumpsys(). */ if (!arm_apcs_32) return 0; /* The stack pointer shouldn't be zero. */ if (pcb->pcb_sp == 0) return 0; read_memory (pcb->pcb_sp, (gdb_byte *) &sf, sizeof sf); regcache->raw_supply (ARM_PC_REGNUM, &sf.sf_pc); regcache->raw_supply (ARM_SP_REGNUM, &pcb->pcb_sp); regcache->raw_supply (12, &pcb->pcb_r12); regcache->raw_supply (11, &pcb->pcb_r11); regcache->raw_supply (10, &pcb->pcb_r10); regcache->raw_supply (9, &pcb->pcb_r9); regcache->raw_supply (8, &pcb->pcb_r8); regcache->raw_supply (7, &sf.sf_r7); regcache->raw_supply (6, &sf.sf_r6); regcache->raw_supply (5, &sf.sf_r5); regcache->raw_supply (4, &sf.sf_r4); return 1; } static void arm_supply_vfpregset (struct regcache *regcache, struct fpreg *fpregset) { arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (regcache->arch ()); if (tdep->vfp_register_count == 0) return; struct vfpreg &vfp = fpregset->fpr_vfp; for (int regno = 0; regno <= tdep->vfp_register_count; regno++) regcache->raw_supply (regno + ARM_D0_REGNUM, (char *) &vfp.vfp_regs[regno]); regcache->raw_supply (ARM_FPSCR_REGNUM, (char *) &vfp.vfp_fpscr); } static void fetch_register (struct regcache *regcache, int regno) { struct reg inferior_registers; int ret; int lwp = regcache->ptid ().lwp (); ret = ptrace (PT_GETREGS, regcache->ptid ().pid (), (PTRACE_TYPE_ARG3) &inferior_registers, lwp); if (ret < 0) { warning (_("unable to fetch general register")); return; } arm_nbsd_supply_gregset (nullptr, regcache, regno, &inferior_registers, sizeof (inferior_registers)); } static void fetch_fp_register (struct regcache *regcache, int regno) { struct fpreg inferior_fp_registers; int lwp = regcache->ptid ().lwp (); int ret = ptrace (PT_GETFPREGS, regcache->ptid ().pid (), (PTRACE_TYPE_ARG3) &inferior_fp_registers, lwp); struct vfpreg &vfp = inferior_fp_registers.fpr_vfp; if (ret < 0) { warning (_("unable to fetch floating-point register")); return; } arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (regcache->arch ()); if (regno == ARM_FPSCR_REGNUM && tdep->vfp_register_count != 0) regcache->raw_supply (ARM_FPSCR_REGNUM, (char *) &vfp.vfp_fpscr); else if (regno >= ARM_D0_REGNUM && regno <= ARM_D0_REGNUM + tdep->vfp_register_count) { regcache->raw_supply (regno, (char *) &vfp.vfp_regs[regno - ARM_D0_REGNUM]); } else warning (_("Invalid register number.")); } static void fetch_fp_regs (struct regcache *regcache) { struct fpreg inferior_fp_registers; int lwp = regcache->ptid ().lwp (); int ret; int regno; ret = ptrace (PT_GETFPREGS, regcache->ptid ().pid (), (PTRACE_TYPE_ARG3) &inferior_fp_registers, lwp); if (ret < 0) { warning (_("unable to fetch general registers")); return; } arm_supply_vfpregset (regcache, &inferior_fp_registers); } void arm_netbsd_nat_target::fetch_registers (struct regcache *regcache, int regno) { if (regno >= 0) { /* Handle discontinuous range for general purpose registers. For floating-point registers, it happens to be continuous, but use specific static function for clarity. */ if (getregs_supplies (regno)) fetch_register (regcache, regno); else if (getfpregs_supplies (regno)) fetch_fp_register (regcache, regno); else warning (_("unable to fetch register %d"), regno); } else { fetch_register (regcache, -1); fetch_fp_regs (regcache); } } static void store_register (const struct regcache *regcache, int regno) { struct gdbarch *gdbarch = regcache->arch (); struct reg inferior_registers; int lwp = regcache->ptid ().lwp (); int ret; ret = ptrace (PT_GETREGS, regcache->ptid ().pid (), (PTRACE_TYPE_ARG3) &inferior_registers, lwp); if (ret < 0) { warning (_("unable to fetch general registers")); return; } switch (regno) { case ARM_SP_REGNUM: regcache->raw_collect (ARM_SP_REGNUM, (char *) &inferior_registers.r_sp); break; case ARM_LR_REGNUM: regcache->raw_collect (ARM_LR_REGNUM, (char *) &inferior_registers.r_lr); break; case ARM_PC_REGNUM: if (arm_apcs_32) regcache->raw_collect (ARM_PC_REGNUM, (char *) &inferior_registers.r_pc); else { unsigned pc_val; regcache->raw_collect (ARM_PC_REGNUM, (char *) &pc_val); pc_val = gdbarch_addr_bits_remove (gdbarch, pc_val); inferior_registers.r_pc ^= gdbarch_addr_bits_remove (gdbarch, inferior_registers.r_pc); inferior_registers.r_pc |= pc_val; } break; case ARM_PS_REGNUM: if (arm_apcs_32) regcache->raw_collect (ARM_PS_REGNUM, (char *) &inferior_registers.r_cpsr); else { unsigned psr_val; regcache->raw_collect (ARM_PS_REGNUM, (char *) &psr_val); psr_val ^= gdbarch_addr_bits_remove (gdbarch, psr_val); inferior_registers.r_pc = gdbarch_addr_bits_remove (gdbarch, inferior_registers.r_pc); inferior_registers.r_pc |= psr_val; } break; default: regcache->raw_collect (regno, (char *) &inferior_registers.r[regno]); break; } ret = ptrace (PT_SETREGS, regcache->ptid ().pid (), (PTRACE_TYPE_ARG3) &inferior_registers, lwp); if (ret < 0) warning (_("unable to write register %d to inferior"), regno); } static void store_regs (const struct regcache *regcache) { struct gdbarch *gdbarch = regcache->arch (); struct reg inferior_registers; int lwp = regcache->ptid ().lwp (); int ret; int regno; for (regno = ARM_A1_REGNUM; regno < ARM_SP_REGNUM; regno++) regcache->raw_collect (regno, (char *) &inferior_registers.r[regno]); regcache->raw_collect (ARM_SP_REGNUM, (char *) &inferior_registers.r_sp); regcache->raw_collect (ARM_LR_REGNUM, (char *) &inferior_registers.r_lr); if (arm_apcs_32) { regcache->raw_collect (ARM_PC_REGNUM, (char *) &inferior_registers.r_pc); regcache->raw_collect (ARM_PS_REGNUM, (char *) &inferior_registers.r_cpsr); } else { unsigned pc_val; unsigned psr_val; regcache->raw_collect (ARM_PC_REGNUM, (char *) &pc_val); regcache->raw_collect (ARM_PS_REGNUM, (char *) &psr_val); pc_val = gdbarch_addr_bits_remove (gdbarch, pc_val); psr_val ^= gdbarch_addr_bits_remove (gdbarch, psr_val); inferior_registers.r_pc = pc_val | psr_val; } ret = ptrace (PT_SETREGS, regcache->ptid ().pid (), (PTRACE_TYPE_ARG3) &inferior_registers, lwp); if (ret < 0) warning (_("unable to store general registers")); } static void store_fp_register (const struct regcache *regcache, int regno) { struct fpreg inferior_fp_registers; int lwp = regcache->ptid ().lwp (); int ret = ptrace (PT_GETFPREGS, regcache->ptid ().pid (), (PTRACE_TYPE_ARG3) &inferior_fp_registers, lwp); struct vfpreg &vfp = inferior_fp_registers.fpr_vfp; if (ret < 0) { warning (_("unable to fetch floating-point registers")); return; } arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (regcache->arch ()); if (regno == ARM_FPSCR_REGNUM && tdep->vfp_register_count != 0) regcache->raw_collect (ARM_FPSCR_REGNUM, (char *) &vfp.vfp_fpscr); else if (regno >= ARM_D0_REGNUM && regno <= ARM_D0_REGNUM + tdep->vfp_register_count) { regcache->raw_collect (regno, (char *) &vfp.vfp_regs[regno - ARM_D0_REGNUM]); } else warning (_("Invalid register number.")); ret = ptrace (PT_SETFPREGS, regcache->ptid ().pid (), (PTRACE_TYPE_ARG3) &inferior_fp_registers, lwp); if (ret < 0) warning (_("unable to write register %d to inferior"), regno); } static void store_fp_regs (const struct regcache *regcache) { arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (regcache->arch ()); int lwp = regcache->ptid ().lwp (); if (tdep->vfp_register_count == 0) return; struct fpreg fpregs; for (int regno = 0; regno <= tdep->vfp_register_count; regno++) regcache->raw_collect (regno + ARM_D0_REGNUM, (char *) &fpregs.fpr_vfp.vfp_regs[regno]); regcache->raw_collect (ARM_FPSCR_REGNUM, (char *) &fpregs.fpr_vfp.vfp_fpscr); int ret = ptrace (PT_SETFPREGS, regcache->ptid ().pid (), (PTRACE_TYPE_ARG3) &fpregs, lwp); if (ret < 0) warning (_("unable to store floating-point registers")); } void arm_netbsd_nat_target::store_registers (struct regcache *regcache, int regno) { if (regno >= 0) { if (regno < ARM_F0_REGNUM || regno > ARM_FPS_REGNUM) store_register (regcache, regno); else store_fp_register (regcache, regno); } else { store_regs (regcache); store_fp_regs (regcache); } } const struct target_desc * arm_netbsd_nat_target::read_description () { int flag; size_t len = sizeof (flag); if (sysctlbyname("machdep.fpu_present", &flag, &len, NULL, 0) != 0 || !flag) return arm_read_description (ARM_FP_TYPE_NONE, false); len = sizeof(flag); if (sysctlbyname("machdep.neon_present", &flag, &len, NULL, 0) == 0 && flag) return aarch32_read_description (); return arm_read_description (ARM_FP_TYPE_VFPV3, false); } void _initialize_arm_netbsd_nat (); void _initialize_arm_netbsd_nat () { /* Support debugging kernel virtual memory images. */ bsd_kvm_add_target (armnbsd_supply_pcb); add_inf_child_target (&the_arm_netbsd_nat_target); }