/* $NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $ */ /*- * Copyright (c) 2014 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Mindaugas Rasiukevicius. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * The packet queue (pktqueue) interface is a lockless IP input queue * which also abstracts and handles network ISR scheduling. It provides * a mechanism to enable receiver-side packet steering (RPS). */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $"); #ifdef _KERNEL_OPT #include "opt_net_mpsafe.h" #endif #include <sys/param.h> #include <sys/types.h> #include <sys/atomic.h> #include <sys/cpu.h> #include <sys/pcq.h> #include <sys/intr.h> #include <sys/mbuf.h> #include <sys/proc.h> #include <sys/percpu.h> #include <sys/xcall.h> #include <sys/once.h> #include <sys/queue.h> #include <sys/rwlock.h> #include <net/pktqueue.h> #include <net/rss_config.h> #include <netinet/in.h> #include <netinet/ip.h> #include <netinet/ip6.h> struct pktqueue { /* * The lock used for a barrier mechanism. The barrier counter, * as well as the drop counter, are managed atomically though. * Ensure this group is in a separate cache line. */ union { struct { kmutex_t pq_lock; volatile u_int pq_barrier; }; uint8_t _pad[COHERENCY_UNIT]; }; /* The size of the queue, counters and the interrupt handler. */ u_int pq_maxlen; percpu_t * pq_counters; void * pq_sih; /* The per-CPU queues. */ struct percpu * pq_pcq; /* struct pcq * */ /* The linkage on the list of all pktqueues. */ LIST_ENTRY(pktqueue) pq_list; }; /* The counters of the packet queue. */ #define PQCNT_ENQUEUE 0 #define PQCNT_DEQUEUE 1 #define PQCNT_DROP 2 #define PQCNT_NCOUNTERS 3 typedef struct { uint64_t count[PQCNT_NCOUNTERS]; } pktq_counters_t; /* Special marker value used by pktq_barrier() mechanism. */ #define PKTQ_MARKER ((void *)(~0ULL)) /* * This is a list of all pktqueues. This list is used by * pktq_ifdetach() to issue a barrier on every pktqueue. * * The r/w lock is acquired for writing in pktq_create() and * pktq_destroy(), and for reading in pktq_ifdetach(). * * This list is not performance critical, and will seldom be * accessed. */ static LIST_HEAD(, pktqueue) pktqueue_list __read_mostly; static krwlock_t pktqueue_list_lock __read_mostly; static once_t pktqueue_list_init_once __read_mostly; static int pktqueue_list_init(void) { LIST_INIT(&pktqueue_list); rw_init(&pktqueue_list_lock); return 0; } static void pktq_init_cpu(void *vqp, void *vpq, struct cpu_info *ci) { struct pcq **qp = vqp; struct pktqueue *pq = vpq; *qp = pcq_create(pq->pq_maxlen, KM_SLEEP); } static void pktq_fini_cpu(void *vqp, void *vpq, struct cpu_info *ci) { struct pcq **qp = vqp, *q = *qp; KASSERT(pcq_peek(q) == NULL); pcq_destroy(q); *qp = NULL; /* paranoia */ } static struct pcq * pktq_pcq(struct pktqueue *pq, struct cpu_info *ci) { struct pcq **qp, *q; /* * As long as preemption is disabled, the xcall to swap percpu * buffers can't complete, so it is safe to read the pointer. */ KASSERT(kpreempt_disabled()); qp = percpu_getptr_remote(pq->pq_pcq, ci); q = *qp; return q; } pktqueue_t * pktq_create(size_t maxlen, void (*intrh)(void *), void *sc) { const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU; pktqueue_t *pq; percpu_t *pc; void *sih; RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init); pc = percpu_alloc(sizeof(pktq_counters_t)); if ((sih = softint_establish(sflags, intrh, sc)) == NULL) { percpu_free(pc, sizeof(pktq_counters_t)); return NULL; } pq = kmem_zalloc(sizeof(*pq), KM_SLEEP); mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE); pq->pq_maxlen = maxlen; pq->pq_counters = pc; pq->pq_sih = sih; pq->pq_pcq = percpu_create(sizeof(struct pcq *), pktq_init_cpu, pktq_fini_cpu, pq); rw_enter(&pktqueue_list_lock, RW_WRITER); LIST_INSERT_HEAD(&pktqueue_list, pq, pq_list); rw_exit(&pktqueue_list_lock); return pq; } void pktq_destroy(pktqueue_t *pq) { KASSERT(pktqueue_list_init_once.o_status == ONCE_DONE); rw_enter(&pktqueue_list_lock, RW_WRITER); LIST_REMOVE(pq, pq_list); rw_exit(&pktqueue_list_lock); percpu_free(pq->pq_pcq, sizeof(struct pcq *)); percpu_free(pq->pq_counters, sizeof(pktq_counters_t)); softint_disestablish(pq->pq_sih); mutex_destroy(&pq->pq_lock); kmem_free(pq, sizeof(*pq)); } /* * - pktq_inc_counter: increment the counter given an ID. * - pktq_collect_counts: handler to sum up the counts from each CPU. * - pktq_getcount: return the effective count given an ID. */ static inline void pktq_inc_count(pktqueue_t *pq, u_int i) { percpu_t *pc = pq->pq_counters; pktq_counters_t *c; c = percpu_getref(pc); c->count[i]++; percpu_putref(pc); } static void pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci) { const pktq_counters_t *c = mem; pktq_counters_t *sum = arg; int s = splnet(); for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) { sum->count[i] += c->count[i]; } splx(s); } static uint64_t pktq_get_count(pktqueue_t *pq, pktq_count_t c) { pktq_counters_t sum; if (c != PKTQ_MAXLEN) { memset(&sum, 0, sizeof(sum)); percpu_foreach_xcall(pq->pq_counters, XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum); } switch (c) { case PKTQ_NITEMS: return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE]; case PKTQ_DROPS: return sum.count[PQCNT_DROP]; case PKTQ_MAXLEN: return pq->pq_maxlen; } return 0; } uint32_t pktq_rps_hash(const pktq_rps_hash_func_t *funcp, const struct mbuf *m) { pktq_rps_hash_func_t func = atomic_load_relaxed(funcp); KASSERT(func != NULL); return (*func)(m); } static uint32_t pktq_rps_hash_zero(const struct mbuf *m __unused) { return 0; } static uint32_t pktq_rps_hash_curcpu(const struct mbuf *m __unused) { return cpu_index(curcpu()); } static uint32_t pktq_rps_hash_toeplitz(const struct mbuf *m) { struct ip *ip; /* * Disable UDP port - IP fragments aren't currently being handled * and so we end up with a mix of 2-tuple and 4-tuple * traffic. */ const u_int flag = RSS_TOEPLITZ_USE_TCP_PORT; /* glance IP version */ if ((m->m_flags & M_PKTHDR) == 0) return 0; ip = mtod(m, struct ip *); if (ip->ip_v == IPVERSION) { if (__predict_false(m->m_len < sizeof(struct ip))) return 0; return rss_toeplitz_hash_from_mbuf_ipv4(m, flag); } else if (ip->ip_v == 6) { if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) return 0; return rss_toeplitz_hash_from_mbuf_ipv6(m, flag); } return 0; } /* * toeplitz without curcpu. * Generally, this has better performance than toeplitz. */ static uint32_t pktq_rps_hash_toeplitz_othercpus(const struct mbuf *m) { uint32_t hash; if (ncpu == 1) return 0; hash = pktq_rps_hash_toeplitz(m); hash %= ncpu - 1; if (hash >= cpu_index(curcpu())) return hash + 1; else return hash; } static struct pktq_rps_hash_table { const char* prh_type; pktq_rps_hash_func_t prh_func; } const pktq_rps_hash_tab[] = { { "zero", pktq_rps_hash_zero }, { "curcpu", pktq_rps_hash_curcpu }, { "toeplitz", pktq_rps_hash_toeplitz }, { "toeplitz-othercpus", pktq_rps_hash_toeplitz_othercpus }, }; const pktq_rps_hash_func_t pktq_rps_hash_default = #ifdef NET_MPSAFE pktq_rps_hash_curcpu; #else pktq_rps_hash_zero; #endif static const char * pktq_get_rps_hash_type(pktq_rps_hash_func_t func) { for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) { if (func == pktq_rps_hash_tab[i].prh_func) { return pktq_rps_hash_tab[i].prh_type; } } return NULL; } static int pktq_set_rps_hash_type(pktq_rps_hash_func_t *func, const char *type) { if (strcmp(type, pktq_get_rps_hash_type(*func)) == 0) return 0; for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) { if (strcmp(type, pktq_rps_hash_tab[i].prh_type) == 0) { atomic_store_relaxed(func, pktq_rps_hash_tab[i].prh_func); return 0; } } return ENOENT; } int sysctl_pktq_rps_hash_handler(SYSCTLFN_ARGS) { struct sysctlnode node; pktq_rps_hash_func_t *func; int error; char type[PKTQ_RPS_HASH_NAME_LEN]; node = *rnode; func = node.sysctl_data; strlcpy(type, pktq_get_rps_hash_type(*func), PKTQ_RPS_HASH_NAME_LEN); node.sysctl_data = &type; node.sysctl_size = sizeof(type); error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; error = pktq_set_rps_hash_type(func, type); return error; } /* * pktq_enqueue: inject the packet into the end of the queue. * * => Must be called from the interrupt or with the preemption disabled. * => Consumes the packet and returns true on success. * => Returns false on failure; caller is responsible to free the packet. */ bool pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused) { #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI) struct cpu_info *ci = curcpu(); #else struct cpu_info *ci = cpu_lookup(hash % ncpu); #endif KASSERT(kpreempt_disabled()); if (__predict_false(!pcq_put(pktq_pcq(pq, ci), m))) { pktq_inc_count(pq, PQCNT_DROP); return false; } softint_schedule_cpu(pq->pq_sih, ci); pktq_inc_count(pq, PQCNT_ENQUEUE); return true; } /* * pktq_dequeue: take a packet from the queue. * * => Must be called with preemption disabled. * => Must ensure there are not concurrent dequeue calls. */ struct mbuf * pktq_dequeue(pktqueue_t *pq) { struct cpu_info *ci = curcpu(); struct mbuf *m; KASSERT(kpreempt_disabled()); m = pcq_get(pktq_pcq(pq, ci)); if (__predict_false(m == PKTQ_MARKER)) { /* Note the marker entry. */ atomic_inc_uint(&pq->pq_barrier); /* Get the next queue entry. */ m = pcq_get(pktq_pcq(pq, ci)); /* * There can only be one barrier operation pending * on a pktqueue at any given time, so we can assert * that the next item is not a marker. */ KASSERT(m != PKTQ_MARKER); } if (__predict_true(m != NULL)) { pktq_inc_count(pq, PQCNT_DEQUEUE); } return m; } /* * pktq_barrier: waits for a grace period when all packets enqueued at * the moment of calling this routine will be processed. This is used * to ensure that e.g. packets referencing some interface were drained. */ void pktq_barrier(pktqueue_t *pq) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; u_int pending = 0; mutex_enter(&pq->pq_lock); KASSERT(pq->pq_barrier == 0); for (CPU_INFO_FOREACH(cii, ci)) { struct pcq *q; kpreempt_disable(); q = pktq_pcq(pq, ci); kpreempt_enable(); /* If the queue is empty - nothing to do. */ if (pcq_peek(q) == NULL) { continue; } /* Otherwise, put the marker and entry. */ while (!pcq_put(q, PKTQ_MARKER)) { kpause("pktqsync", false, 1, NULL); } kpreempt_disable(); softint_schedule_cpu(pq->pq_sih, ci); kpreempt_enable(); pending++; } /* Wait for each queue to process the markers. */ while (pq->pq_barrier != pending) { kpause("pktqsync", false, 1, NULL); } pq->pq_barrier = 0; mutex_exit(&pq->pq_lock); } /* * pktq_ifdetach: issue a barrier on all pktqueues when a network * interface is detached. */ void pktq_ifdetach(void) { pktqueue_t *pq; /* Just in case no pktqueues have been created yet... */ RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init); rw_enter(&pktqueue_list_lock, RW_READER); LIST_FOREACH(pq, &pktqueue_list, pq_list) { pktq_barrier(pq); } rw_exit(&pktqueue_list_lock); } /* * pktq_flush: free mbufs in all queues. * * => The caller must ensure there are no concurrent writers or flush calls. */ void pktq_flush(pktqueue_t *pq) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; struct mbuf *m, *m0 = NULL; ASSERT_SLEEPABLE(); /* * Run a dummy softint at IPL_SOFTNET on all CPUs to ensure that any * already running handler for this pktqueue is no longer running. */ xc_barrier(XC_HIGHPRI_IPL(IPL_SOFTNET)); /* * Acquire the barrier lock. While the caller ensures that * no explicit pktq_barrier() calls will be issued, this holds * off any implicit pktq_barrier() calls that would happen * as the result of pktq_ifdetach(). */ mutex_enter(&pq->pq_lock); for (CPU_INFO_FOREACH(cii, ci)) { struct pcq *q; kpreempt_disable(); q = pktq_pcq(pq, ci); kpreempt_enable(); /* * Pull the packets off the pcq and chain them into * a list to be freed later. */ while ((m = pcq_get(q)) != NULL) { pktq_inc_count(pq, PQCNT_DEQUEUE); m->m_nextpkt = m0; m0 = m; } } mutex_exit(&pq->pq_lock); /* Free the packets now that the critical section is over. */ while ((m = m0) != NULL) { m0 = m->m_nextpkt; m_freem(m); } } static void pktq_set_maxlen_cpu(void *vpq, void *vqs) { struct pktqueue *pq = vpq; struct pcq **qp, *q, **qs = vqs; unsigned i = cpu_index(curcpu()); int s; s = splnet(); qp = percpu_getref(pq->pq_pcq); q = *qp; *qp = qs[i]; qs[i] = q; percpu_putref(pq->pq_pcq); splx(s); } /* * pktq_set_maxlen: create per-CPU queues using a new size and replace * the existing queues without losing any packets. * * XXX ncpu must remain stable throughout. */ int pktq_set_maxlen(pktqueue_t *pq, size_t maxlen) { const u_int slotbytes = ncpu * sizeof(pcq_t *); pcq_t **qs; if (!maxlen || maxlen > PCQ_MAXLEN) return EINVAL; if (pq->pq_maxlen == maxlen) return 0; /* First, allocate the new queues. */ qs = kmem_zalloc(slotbytes, KM_SLEEP); for (u_int i = 0; i < ncpu; i++) { qs[i] = pcq_create(maxlen, KM_SLEEP); } /* * Issue an xcall to replace the queue pointers on each CPU. * This implies all the necessary memory barriers. */ mutex_enter(&pq->pq_lock); xc_wait(xc_broadcast(XC_HIGHPRI, pktq_set_maxlen_cpu, pq, qs)); pq->pq_maxlen = maxlen; mutex_exit(&pq->pq_lock); /* * At this point, the new packets are flowing into the new * queues. However, the old queues may have some packets * present which are no longer being processed. We are going * to re-enqueue them. This may change the order of packet * arrival, but it is not considered an issue. * * There may be in-flight interrupts calling pktq_dequeue() * which reference the old queues. Issue a barrier to ensure * that we are going to be the only pcq_get() callers on the * old queues. */ pktq_barrier(pq); for (u_int i = 0; i < ncpu; i++) { struct pcq *q; struct mbuf *m; kpreempt_disable(); q = pktq_pcq(pq, cpu_lookup(i)); kpreempt_enable(); while ((m = pcq_get(qs[i])) != NULL) { while (!pcq_put(q, m)) { kpause("pktqrenq", false, 1, NULL); } } pcq_destroy(qs[i]); } /* Well, that was fun. */ kmem_free(qs, slotbytes); return 0; } static int sysctl_pktq_maxlen(SYSCTLFN_ARGS) { struct sysctlnode node = *rnode; pktqueue_t * const pq = node.sysctl_data; u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN); int error; node.sysctl_data = &nmaxlen; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; return pktq_set_maxlen(pq, nmaxlen); } static int sysctl_pktq_count(SYSCTLFN_ARGS, u_int count_id) { struct sysctlnode node = *rnode; pktqueue_t * const pq = node.sysctl_data; uint64_t count = pktq_get_count(pq, count_id); node.sysctl_data = &count; return sysctl_lookup(SYSCTLFN_CALL(&node)); } static int sysctl_pktq_nitems(SYSCTLFN_ARGS) { return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_NITEMS); } static int sysctl_pktq_drops(SYSCTLFN_ARGS) { return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_DROPS); } /* * pktqueue_sysctl_setup: set up the sysctl nodes for a pktqueue * using standardized names at the specified parent node and * node ID (or CTL_CREATE). */ void pktq_sysctl_setup(pktqueue_t * const pq, struct sysctllog ** const clog, const struct sysctlnode * const parent_node, const int qid) { const struct sysctlnode *rnode = parent_node, *cnode; KASSERT(pq != NULL); KASSERT(parent_node != NULL); KASSERT(qid == CTL_CREATE || qid >= 0); /* Create the "ifq" node below the parent node. */ sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ifq", SYSCTL_DESCR("Protocol input queue controls"), NULL, 0, NULL, 0, qid, CTL_EOL); /* Now create the standard child nodes below "ifq". */ rnode = cnode; sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT, CTLTYPE_QUAD, "len", SYSCTL_DESCR("Current input queue length"), sysctl_pktq_nitems, 0, (void *)pq, 0, IFQCTL_LEN, CTL_EOL); sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "maxlen", SYSCTL_DESCR("Maximum allowed input queue length"), sysctl_pktq_maxlen, 0, (void *)pq, 0, IFQCTL_MAXLEN, CTL_EOL); sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT, CTLTYPE_QUAD, "drops", SYSCTL_DESCR("Packets dropped due to full input queue"), sysctl_pktq_drops, 0, (void *)pq, 0, IFQCTL_DROPS, CTL_EOL); }