/* $NetBSD: eisa_machdep.c,v 1.14 2021/09/25 20:16:17 thorpej Exp $ */ /*- * Copyright (c) 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: eisa_machdep.c,v 1.14 2021/09/25 20:16:17 thorpej Exp $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/device.h> #include <sys/kmem.h> #include <sys/queue.h> #include <machine/intr.h> #include <machine/rpb.h> #include <dev/eisa/eisareg.h> #include <dev/eisa/eisavar.h> void eisa_attach_hook(device_t parent, device_t self, struct eisabus_attach_args *eba) { eba->eba_ec->ec_attach_hook(parent, self, eba); } int eisa_maxslots(eisa_chipset_tag_t ec) { return ec->ec_maxslots(ec->ec_v); } int eisa_intr_map(eisa_chipset_tag_t ec, u_int irq, eisa_intr_handle_t *ihp) { return ec->ec_intr_map(ec->ec_v, irq, ihp); } const char * eisa_intr_string(eisa_chipset_tag_t ec, eisa_intr_handle_t ih, char *buf, size_t len) { return ec->ec_intr_string(ec->ec_v, ih, buf, len); } const struct evcnt * eisa_intr_evcnt(eisa_chipset_tag_t ec, eisa_intr_handle_t ih) { return ec->ec_intr_evcnt(ec->ec_v, ih); } void * eisa_intr_establish(eisa_chipset_tag_t ec, eisa_intr_handle_t ih, int type, int level, int (*func)(void *), void *arg) { return ec->ec_intr_establish(ec->ec_v, ih, type, level, func, arg); } void eisa_intr_disestablish(eisa_chipset_tag_t ec, void *cookie) { return ec->ec_intr_disestablish(ec->ec_v, cookie); } #define EISA_SLOT_HEADER_SIZE 31 #define EISA_SLOT_INFO_OFFSET 20 #define EISA_FUNC_INFO_OFFSET 34 #define EISA_CONFIG_BLOCK_SIZE 320 #define ECUF_TYPE_STRING 0x01 #define ECUF_MEM_ENTRY 0x02 #define ECUF_IRQ_ENTRY 0x04 #define ECUF_DMA_ENTRY 0x08 #define ECUF_IO_ENTRY 0x10 #define ECUF_INIT_ENTRY 0x20 #define ECUF_DISABLED 0x80 #define ECUF_SELECTIONS_SIZE 26 #define ECUF_TYPE_STRING_SIZE 80 #define ECUF_MEM_ENTRY_SIZE 7 #define ECUF_IRQ_ENTRY_SIZE 2 #define ECUF_DMA_ENTRY_SIZE 2 #define ECUF_IO_ENTRY_SIZE 3 #define ECUF_INIT_ENTRY_SIZE 60 #define ECUF_MEM_ENTRY_CNT 9 #define ECUF_IRQ_ENTRY_CNT 7 #define ECUF_DMA_ENTRY_CNT 4 #define ECUF_IO_ENTRY_CNT 20 #define CBUFSIZE 512 /* * EISA configuration space, as set up by the ECU, may be sparse. */ bus_size_t eisa_config_stride; paddr_t eisa_config_addr; /* defaults to 0 */ paddr_t eisa_config_header_addr; struct ecu_mem { SIMPLEQ_ENTRY(ecu_mem) ecum_list; struct eisa_cfg_mem ecum_mem; }; struct ecu_irq { SIMPLEQ_ENTRY(ecu_irq) ecui_list; struct eisa_cfg_irq ecui_irq; }; struct ecu_dma { SIMPLEQ_ENTRY(ecu_dma) ecud_list; struct eisa_cfg_dma ecud_dma; }; struct ecu_io { SIMPLEQ_ENTRY(ecu_io) ecuio_list; struct eisa_cfg_io ecuio_io; }; struct ecu_func { SIMPLEQ_ENTRY(ecu_func) ecuf_list; int ecuf_funcno; uint32_t ecuf_id; uint16_t ecuf_slot_info; uint16_t ecuf_cfg_ext; uint8_t ecuf_selections[ECUF_SELECTIONS_SIZE]; uint8_t ecuf_func_info; uint8_t ecuf_type_string[ECUF_TYPE_STRING_SIZE]; uint8_t ecuf_init[ECUF_INIT_ENTRY_SIZE]; SIMPLEQ_HEAD(, ecu_mem) ecuf_mem; SIMPLEQ_HEAD(, ecu_irq) ecuf_irq; SIMPLEQ_HEAD(, ecu_dma) ecuf_dma; SIMPLEQ_HEAD(, ecu_io) ecuf_io; }; struct ecu_data { SIMPLEQ_ENTRY(ecu_data) ecud_list; int ecud_slot; uint8_t ecud_eisaid[EISA_IDSTRINGLEN]; uint32_t ecud_offset; /* General slot info. */ uint8_t ecud_slot_info; uint16_t ecud_ecu_major_rev; uint16_t ecud_ecu_minor_rev; uint16_t ecud_cksum; uint16_t ecud_ndevfuncs; uint8_t ecud_funcinfo; uint32_t ecud_comp_id; /* The functions */ SIMPLEQ_HEAD(, ecu_func) ecud_funcs; }; SIMPLEQ_HEAD(, ecu_data) ecu_data_list = SIMPLEQ_HEAD_INITIALIZER(ecu_data_list); static void ecuf_init(struct ecu_func *ecuf) { memset(ecuf, 0, sizeof(*ecuf)); SIMPLEQ_INIT(&ecuf->ecuf_mem); SIMPLEQ_INIT(&ecuf->ecuf_irq); SIMPLEQ_INIT(&ecuf->ecuf_dma); SIMPLEQ_INIT(&ecuf->ecuf_io); } static void eisa_parse_mem(struct ecu_func *ecuf, uint8_t *dp) { struct ecu_mem *ecum; int i; for (i = 0; i < ECUF_MEM_ENTRY_CNT; i++) { ecum = kmem_zalloc(sizeof(*ecum), KM_SLEEP); ecum->ecum_mem.ecm_isram = dp[0] & 0x1; ecum->ecum_mem.ecm_unitsize = dp[1] & 0x3; ecum->ecum_mem.ecm_decode = (dp[1] >> 2) & 0x3; ecum->ecum_mem.ecm_addr = (dp[2] | (dp[3] << 8) | (dp[4] << 16)) << 8; ecum->ecum_mem.ecm_size = (dp[5] | (dp[6] << 8)) << 10; if (ecum->ecum_mem.ecm_size == 0) ecum->ecum_mem.ecm_size = (1 << 26); SIMPLEQ_INSERT_TAIL(&ecuf->ecuf_mem, ecum, ecum_list); #ifdef EISA_DEBUG printf("MEM 0x%lx 0x%lx %d %d %d\n", ecum->ecum_mem.ecm_addr, ecum->ecum_mem.ecm_size, ecum->ecum_mem.ecm_isram, ecum->ecum_mem.ecm_unitsize, ecum->ecum_mem.ecm_decode); #endif if ((dp[0] & 0x80) == 0) break; dp += ECUF_MEM_ENTRY_SIZE; } } static void eisa_parse_irq(struct ecu_func *ecuf, uint8_t *dp) { struct ecu_irq *ecui; int i; for (i = 0; i < ECUF_IRQ_ENTRY_CNT; i++) { ecui = kmem_zalloc(sizeof(*ecui), KM_SLEEP); ecui->ecui_irq.eci_irq = dp[0] & 0xf; ecui->ecui_irq.eci_ist = (dp[0] & 0x20) ? IST_LEVEL : IST_EDGE; ecui->ecui_irq.eci_shared = (dp[0] & 0x40) ? 1 : 0; SIMPLEQ_INSERT_TAIL(&ecuf->ecuf_irq, ecui, ecui_list); #ifdef EISA_DEBUG printf("IRQ %d %s%s\n", ecui->ecui_irq.eci_irq, ecui->ecui_irq.eci_ist == IST_LEVEL ? "level" : "edge", ecui->ecui_irq.eci_shared ? " shared" : ""); #endif if ((dp[0] & 0x80) == 0) break; dp += ECUF_IRQ_ENTRY_SIZE; } } static void eisa_parse_dma(struct ecu_func *ecuf, uint8_t *dp) { struct ecu_dma *ecud; int i; for (i = 0; i < ECUF_DMA_ENTRY_CNT; i++) { ecud = kmem_zalloc(sizeof(*ecud), KM_SLEEP); ecud->ecud_dma.ecd_drq = dp[0] & 0x7; ecud->ecud_dma.ecd_shared = dp[0] & 0x40; ecud->ecud_dma.ecd_size = (dp[1] >> 2) & 0x3; ecud->ecud_dma.ecd_timing = (dp[1] >> 4) & 0x3; SIMPLEQ_INSERT_TAIL(&ecuf->ecuf_dma, ecud, ecud_list); #ifdef EISA_DEBUG printf("DRQ %d%s %d %d\n", ecud->ecud_dma.ecd_drq, ecud->ecud_dma.ecd_shared ? " shared" : "", ecud->ecud_dma.ecd_size, ecud->ecud_dma.ecd_timing); #endif if ((dp[0] & 0x80) == 0) break; dp += ECUF_DMA_ENTRY_SIZE; } } static void eisa_parse_io(struct ecu_func *ecuf, uint8_t *dp) { struct ecu_io *ecuio; int i; for (i = 0; i < ECUF_IO_ENTRY_CNT; i++) { ecuio = kmem_zalloc(sizeof(*ecuio), KM_SLEEP); ecuio->ecuio_io.ecio_addr = dp[1] | (dp[2] << 8); ecuio->ecuio_io.ecio_size = (dp[0] & 0x1f) + 1; ecuio->ecuio_io.ecio_shared = (dp[0] & 0x40) ? 1 : 0; SIMPLEQ_INSERT_TAIL(&ecuf->ecuf_io, ecuio, ecuio_list); #ifdef EISA_DEBUG printf("IO 0x%lx 0x%lx%s\n", ecuio->ecuio_io.ecio_addr, ecuio->ecuio_io.ecio_size, ecuio->ecuio_io.ecio_shared ? " shared" : ""); #endif if ((dp[0] & 0x80) == 0) break; dp += ECUF_IO_ENTRY_SIZE; } } static void eisa_read_config_bytes(paddr_t addr, void *buf, size_t count) { const uint8_t *src = (const uint8_t *)ALPHA_PHYS_TO_K0SEG(addr); uint8_t *dst = buf; for (; count != 0; count--) { *dst++ = *src; src += eisa_config_stride; } } static void eisa_read_config_word(paddr_t addr, uint32_t *valp) { const uint8_t *src = (const uint8_t *)ALPHA_PHYS_TO_K0SEG(addr); uint32_t val = 0; int i; for (i = 0; i < sizeof(val); i++) { val |= (uint32_t)*src << (i * 8); src += eisa_config_stride; } *valp = val; } static size_t eisa_uncompress(void *cbufp, void *ucbufp, size_t count) { const uint8_t *cbuf = cbufp; uint8_t *ucbuf = ucbufp; u_int zeros = 0; while (count--) { if (zeros) { zeros--; *ucbuf++ = '\0'; } else if (*cbuf == '\0') { *ucbuf++ = *cbuf++; zeros = *cbuf++ - 1; } else *ucbuf++ = *cbuf++; } return ((size_t)cbuf - (size_t)cbufp); } void eisa_init(eisa_chipset_tag_t ec) { struct ecu_data *ecud; paddr_t cfgaddr; uint32_t offset; uint8_t eisaid[EISA_IDSTRINGLEN]; uint8_t *cdata, *data; uint8_t *cdp, *dp; struct ecu_func *ecuf; int i, func; /* * Locate EISA configuration space. */ if (hwrpb->rpb_condat_off == 0UL || (hwrpb->rpb_condat_off >> 63) != 0) { printf(": WARNING: no EISA configuration space"); return; } if (eisa_config_header_addr) { printf("\n"); panic("eisa_init: EISA config space already initialized"); } eisa_config_header_addr = hwrpb->rpb_condat_off; if (eisa_config_stride == 0) eisa_config_stride = 1; #ifdef EISA_DEBUG printf("\nEISA config header at 0x%lx\n", eisa_config_header_addr); printf("EISA config at 0x%lx\n", eisa_config_addr); printf("EISA config stride: %ld\n", eisa_config_stride); #endif /* * Read the slot headers, and allocate config structures for * valid slots. */ for (cfgaddr = eisa_config_header_addr, i = 0; i < eisa_maxslots(ec); i++) { eisa_read_config_bytes(cfgaddr, eisaid, sizeof(eisaid)); eisaid[EISA_IDSTRINGLEN - 1] = '\0'; /* sanity */ cfgaddr += sizeof(eisaid) * eisa_config_stride; eisa_read_config_word(cfgaddr, &offset); cfgaddr += sizeof(offset) * eisa_config_stride; if (offset != 0 && offset != 0xffffffff) { #ifdef EISA_DEBUG printf("SLOT %d: offset 0x%08x eisaid %s\n", i, offset, eisaid); #endif ecud = kmem_zalloc(sizeof(*ecud), KM_SLEEP); SIMPLEQ_INIT(&ecud->ecud_funcs); ecud->ecud_slot = i; memcpy(ecud->ecud_eisaid, eisaid, sizeof(eisaid)); ecud->ecud_offset = offset; SIMPLEQ_INSERT_TAIL(&ecu_data_list, ecud, ecud_list); } } /* * Now traverse the valid slots and read the info. */ cdata = kmem_zalloc(CBUFSIZE, KM_SLEEP); data = kmem_zalloc(CBUFSIZE, KM_SLEEP); SIMPLEQ_FOREACH(ecud, &ecu_data_list, ecud_list) { cfgaddr = eisa_config_addr + ecud->ecud_offset; #ifdef EISA_DEBUG printf("Checking SLOT %d\n", ecud->ecud_slot); printf("Reading config bytes at 0x%lx to cdata[0]\n", cfgaddr); #endif eisa_read_config_bytes(cfgaddr, &cdata[0], 1); cfgaddr += eisa_config_stride; for (i = 1; i < CBUFSIZE; cfgaddr += eisa_config_stride, i++) { #ifdef EISA_DEBUG printf("Reading config bytes at 0x%lx to cdata[%d]\n", cfgaddr, i); #endif eisa_read_config_bytes(cfgaddr, &cdata[i], 1); if (cdata[i - 1] == 0 && cdata[i] == 0) break; } if (i == CBUFSIZE) { /* assume this compressed data invalid */ #ifdef EISA_DEBUG printf("SLOT %d has invalid config\n", ecud->ecud_slot); #endif continue; } i++; /* index -> length */ #ifdef EISA_DEBUG printf("SLOT %d compressed data length %d:", ecud->ecud_slot, i); { int j; for (j = 0; j < i; j++) { if ((j % 16) == 0) printf("\n"); printf("0x%02x ", cdata[j]); } printf("\n"); } #endif cdp = cdata; dp = data; /* Uncompress the slot header. */ cdp += eisa_uncompress(cdp, dp, EISA_SLOT_HEADER_SIZE); #ifdef EISA_DEBUG printf("SLOT %d uncompressed header data:", ecud->ecud_slot); { int j; for (j = 0; j < EISA_SLOT_HEADER_SIZE; j++) { if ((j % 16) == 0) printf("\n"); printf("0x%02x ", dp[j]); } printf("\n"); } #endif dp = &data[EISA_SLOT_INFO_OFFSET]; ecud->ecud_slot_info = *dp++; ecud->ecud_ecu_major_rev = *dp++; ecud->ecud_ecu_minor_rev = *dp++; memcpy(&ecud->ecud_cksum, dp, sizeof(ecud->ecud_cksum)); dp += sizeof(ecud->ecud_cksum); ecud->ecud_ndevfuncs = *dp++; ecud->ecud_funcinfo = *dp++; memcpy(&ecud->ecud_comp_id, dp, sizeof(ecud->ecud_comp_id)); dp += sizeof(ecud->ecud_comp_id); #ifdef EISA_DEBUG printf("SLOT %d: ndevfuncs %d\n", ecud->ecud_slot, ecud->ecud_ndevfuncs); #endif for (func = 0; func < ecud->ecud_ndevfuncs; func++) { dp = data; cdp += eisa_uncompress(cdp, dp, EISA_CONFIG_BLOCK_SIZE); #ifdef EISA_DEBUG printf("SLOT %d:%d uncompressed data:", ecud->ecud_slot, func); { int j; for (j = 0; i < EISA_CONFIG_BLOCK_SIZE; j++) { if ((j % 16) == 0) printf("\n"); printf("0x%02x ", dp[j]); } printf("\n"); } #endif /* Skip disabled functions. */ if (dp[EISA_FUNC_INFO_OFFSET] & ECUF_DISABLED) { #ifdef EISA_DEBUG printf("SLOT %d:%d disabled\n", ecud->ecud_slot, func); #endif continue; } ecuf = kmem_zalloc(sizeof(*ecuf), KM_SLEEP); ecuf_init(ecuf); ecuf->ecuf_funcno = func; SIMPLEQ_INSERT_TAIL(&ecud->ecud_funcs, ecuf, ecuf_list); memcpy(&ecuf->ecuf_id, dp, sizeof(ecuf->ecuf_id)); dp += sizeof(ecuf->ecuf_id); memcpy(&ecuf->ecuf_slot_info, dp, sizeof(ecuf->ecuf_slot_info)); dp += sizeof(ecuf->ecuf_slot_info); memcpy(&ecuf->ecuf_cfg_ext, dp, sizeof(ecuf->ecuf_cfg_ext)); dp += sizeof(ecuf->ecuf_cfg_ext); memcpy(&ecuf->ecuf_selections, dp, sizeof(ecuf->ecuf_selections)); dp += sizeof(ecuf->ecuf_selections); memcpy(&ecuf->ecuf_func_info, dp, sizeof(ecuf->ecuf_func_info)); dp += sizeof(ecuf->ecuf_func_info); if (ecuf->ecuf_func_info & ECUF_TYPE_STRING) memcpy(ecuf->ecuf_type_string, dp, sizeof(ecuf->ecuf_type_string)); dp += sizeof(ecuf->ecuf_type_string); if (ecuf->ecuf_func_info & ECUF_MEM_ENTRY) eisa_parse_mem(ecuf, dp); dp += ECUF_MEM_ENTRY_SIZE * ECUF_MEM_ENTRY_CNT; if (ecuf->ecuf_func_info & ECUF_IRQ_ENTRY) eisa_parse_irq(ecuf, dp); dp += ECUF_IRQ_ENTRY_SIZE * ECUF_IRQ_ENTRY_CNT; if (ecuf->ecuf_func_info & ECUF_DMA_ENTRY) eisa_parse_dma(ecuf, dp); dp += ECUF_DMA_ENTRY_SIZE * ECUF_DMA_ENTRY_CNT; if (ecuf->ecuf_func_info & ECUF_IO_ENTRY) eisa_parse_io(ecuf, dp); dp += ECUF_IO_ENTRY_SIZE * ECUF_IO_ENTRY_CNT; if (ecuf->ecuf_func_info & ECUF_INIT_ENTRY) memcpy(ecuf->ecuf_init, dp, sizeof(ecuf->ecuf_init)); dp += sizeof(ecuf->ecuf_init); } } kmem_free(cdata, CBUFSIZE); kmem_free(data, CBUFSIZE); } static struct ecu_data * eisa_lookup_data(int slot) { struct ecu_data *ecud; SIMPLEQ_FOREACH(ecud, &ecu_data_list, ecud_list) { if (ecud->ecud_slot == slot) return (ecud); } return (NULL); } static struct ecu_func * eisa_lookup_func(int slot, int func) { struct ecu_data *ecud; struct ecu_func *ecuf; ecud = eisa_lookup_data(slot); if (ecud == NULL) return (NULL); SIMPLEQ_FOREACH(ecuf, &ecud->ecud_funcs, ecuf_list) { if (ecuf->ecuf_funcno == func) return (ecuf); } return (NULL); } int eisa_conf_read_mem(eisa_chipset_tag_t ec, int slot, int func, int entry, struct eisa_cfg_mem *dp) { struct ecu_func *ecuf; struct ecu_mem *ecum; ecuf = eisa_lookup_func(slot, func); if (ecuf == NULL) return (ENOENT); SIMPLEQ_FOREACH(ecum, &ecuf->ecuf_mem, ecum_list) { if (entry-- == 0) break; } if (ecum == NULL) return (ENOENT); *dp = ecum->ecum_mem; return (0); } int eisa_conf_read_irq(eisa_chipset_tag_t ec, int slot, int func, int entry, struct eisa_cfg_irq *dp) { struct ecu_func *ecuf; struct ecu_irq *ecui; ecuf = eisa_lookup_func(slot, func); if (ecuf == NULL) return (ENOENT); SIMPLEQ_FOREACH(ecui, &ecuf->ecuf_irq, ecui_list) { if (entry-- == 0) break; } if (ecui == NULL) return (ENOENT); *dp = ecui->ecui_irq; return (0); } int eisa_conf_read_dma(eisa_chipset_tag_t ec, int slot, int func, int entry, struct eisa_cfg_dma *dp) { struct ecu_func *ecuf; struct ecu_dma *ecud; ecuf = eisa_lookup_func(slot, func); if (ecuf == NULL) return (ENOENT); SIMPLEQ_FOREACH(ecud, &ecuf->ecuf_dma, ecud_list) { if (entry-- == 0) break; } if (ecud == NULL) return (ENOENT); *dp = ecud->ecud_dma; return (0); } int eisa_conf_read_io(eisa_chipset_tag_t ec, int slot, int func, int entry, struct eisa_cfg_io *dp) { struct ecu_func *ecuf; struct ecu_io *ecuio; ecuf = eisa_lookup_func(slot, func); if (ecuf == NULL) return (ENOENT); SIMPLEQ_FOREACH(ecuio, &ecuf->ecuf_io, ecuio_list) { if (entry-- == 0) break; } if (ecuio == NULL) return (ENOENT); *dp = ecuio->ecuio_io; return (0); }